43 research outputs found

    State tomography of capacitively shunted phase qubits with high fidelity

    Full text link
    We introduce a new design concept for superconducting quantum bits (qubits) in which we explicitly separate the capacitive element from the Josephson tunnel junction for improved qubit performance. The number of two-level systems (TLS) that couple to the qubit is thereby reduced by an order of magnitude and the measurement fidelity improves to 90%. This improved design enables the first demonstration of quantum state tomography with superconducting qubits using single shot measurements.Comment: submitted to PR

    Microwave Dielectric Loss at Single Photon Energies and milliKelvin Temperatures

    Full text link
    The microwave performance of amorphous dielectric materials at very low temperatures and very low excitation strengths displays significant excess loss. Here, we present the loss tangents of some common amorphous and crystalline dielectrics, measured at low temperatures (T < 100 mK) with near single-photon excitation energies, using both coplanar waveguide (CPW) and lumped LC resonators. The loss can be understood using a two-level state (TLS) defect model. A circuit analysis of the half-wavelength resonators we used is outlined, and the energy dissipation of such a resonator on a multilayered dielectric substrate is considered theoretically.Comment: 4 pages, 3 figures, submitted to Applied Physics Letter

    Improving the Coherence Time of Superconducting Coplanar Resonators

    Full text link
    The quality factor and energy decay time of superconducting resonators have been measured as a function of material, geometry, and magnetic field. Once the dissipation of trapped magnetic vortices is minimized, we identify surface two-level states (TLS) as an important decay mechanism. A wide gap between the center conductor and the ground plane, as well as use of the superconductor Re instead of Al, are shown to decrease loss. We also demonstrate that classical measurements of resonator quality factor at low excitation power are consistent with single-photon decay time measured using qubit-resonator swap experiments.Comment: 3 pages, 4 figures for the main paper; total 5 pages, 6 figures including supplementary material. Submitted to Applied Physics Letter

    Quantum process tomography of two-qubit controlled-Z and controlled-NOT gates using superconducting phase qubits

    Full text link
    We experimentally demonstrate quantum process tomography of controlled-Z and controlled-NOT gates using capacitively-coupled superconducting phase qubits. These gates are realized by using the ∣2⟩|2\rangle state of the phase qubit. We obtain a process fidelity of 0.70 for the controlled-phase and 0.56 for the controlled-NOT gate, with the loss of fidelity mostly due to single-qubit decoherence. The controlled-Z gate is also used to demonstrate a two-qubit Deutsch-Jozsa algorithm with a single function query.Comment: 10 pages, 8 figures, including supplementary informatio

    Measurement of the decay of Fock states in a superconducting quantum circuit

    Full text link
    We demonstrate the controlled generation of Fock states with up to 15 photons in a microwave coplanar waveguide resonator coupled to a superconducting phase qubit. The subsequent decay of the Fock states, due to dissipation, is then monitored by varying the time delay between preparing the state and performing a number-state analysis. We find that the decay dynamics can be described by a master equation where the lifetime of the n-photon Fock state scales as 1/n, in agreement with theory. We have also generated a coherent state in the microwave resonator, and monitored its decay process. We demonstrate that the coherent state maintains a Poisson distribution as it decays, with an average photon number that decreases with the same characteristic decay time as the one-photon Fock state.Comment: 4 pages, 5 figures, and 1 tabl

    Decoherence Dynamics of Complex Photon States in a Superconducting Circuit

    Full text link
    Quantum states inevitably decay with time into a probabilistic mixture of classical states, due to their interaction with the environment and measurement instrumentation. We present the first measurement of the decoherence dynamics of complex photon states in a condensed-matter system. By controllably preparing a number of distinct, quantum-superposed photon states in a superconducting microwave resonator, we show that the subsequent decay dynamics can be quantitatively described by taking into account only two distinct decay channels, energy relaxation and dephasing. Our ability to prepare specific initial quantum states allows us to measure the evolution of specific elements in the quantum density matrix, in a very detailed manner that can be compared with theory.Comment: 4 pages, 4 figures, Supplementary movies can be downloaded at http://www.physics.ucsb.edu/~martinisgroup/movies.shtm

    Surface loss simulations of superconducting coplanar waveguide resonators

    Full text link
    Losses in superconducting planar resonators are presently assumed to predominantly arise from surface-oxide dissipation, due to experimental losses varying with choice of materials. We model and simulate the magnitude of the loss from interface surfaces in the resonator, and investigate the dependence on power, resonator geometry, and dimensions. Surprisingly, the dominant surface loss is found to arise from the metal-substrate and substrate-air interfaces. This result will be useful in guiding device optimization, even with conventional materials.Comment: Main paper: 4 pages, 4 figures, 1 table. Supplementary material: 4 pages, 2 figures, 1 tabl

    Phase qubits fabricated with trilayer junctions

    Full text link
    We have developed a novel Josephson junction geometry with minimal volume of lossy isolation dielectric, being suitable for higher quality trilayer junctions implemented in qubits. The junctions are based on in-situ deposited trilayers with thermal tunnel oxide, have micron-sized areas and a low subgap current. In qubit spectroscopy only a few avoided level crossings are observed, and the measured relaxation time of T1≈400  nsecT_1\approx400\;\rm{nsec} is in good agreement with the usual phase qubit decay time, indicating low loss due to the additional isolation dielectric
    corecore