91 research outputs found

    Human Metapneumovirus Glycoprotein G Inhibits Innate Immune Responses

    Get PDF
    Human metapneumovirus (hMPV) is a leading cause of acute respiratory tract infection in infants, as well as in the elderly and immunocompromised patients. No effective treatment or vaccine for hMPV is currently available. A recombinant hMPV lacking the G protein (rhMPV-ΔG) was recently developed as a potential vaccine candidate and shown to be attenuated in the respiratory tract of a rodent model of infection. The mechanism of its attenuation, as well as the role of G protein in modulation of hMPV-induced cellular responses in vitro, as well as in vivo, is currently unknown. In this study, we found that rhMPV-ΔG-infected airway epithelial cells produced higher levels of chemokines and type I interferon (IFN) compared to cells infected with rhMPV-WT. Infection of airway epithelial cells with rhMPV-ΔG enhanced activation of transcription factors belonging to the nuclear factor (NF)-κB and interferon regulatory factor (IRF) families, as revealed by increased nuclear translocation and/or phosphorylation of these transcription factors. Compared to rhMPV-WT, rhMPV-ΔG also increased IRF- and NF-κB-dependent gene transcription, which was reversely inhibited by G protein expression. Since RNA helicases have been shown to play a fundamental role in initiating viral-induced cellular signaling, we investigated whether retinoic induced gene (RIG)-I was the target of G protein inhibitory activity. We found that indeed G protein associated with RIG-I and inhibited RIG-I-dependent gene transcription, identifying an important mechanism by which hMPV affects innate immune responses. This is the first study investigating the role of hMPV G protein in cellular signaling and identifies G as an important virulence factor, as it inhibits the production of important immune and antiviral mediators by targeting RIG-I, a major intracellular viral RNA sensor

    Entry and Fusion of Emerging Paramyxoviruses

    Get PDF
    Paramyxoviruses are a family of non-segmented RNA viruses that includes major human pathogens such as measles virus and respiratory syncytial virus (RSV) and significant animal viruses like rinderpest. In recent years, several new paramyxoviruses have been identified, further increasing the breadth and importance of this viral family. While many elements of the fusion and entry mechanisms of these recently identified pathogens are conserved, there are interesting differences, including variations in receptor binding, cell tropism, fusion (F) protein proteolytic activation, and triggering of membrane fusion. Thus, study of their entry mechanisms has highlighted the diversity of these critical events in the family

    Evolutionary Dynamics Analysis of Human Metapneumovirus Subtype A2: Genetic Evidence for Its Dominant Epidemic

    Get PDF
    Human metapneumovirus (hMPV) is a respiratory viral pathogen in children worldwide. hMPV is divided into four subtypes: hMPV_A1, hMPV_A2, hMPV_B1, and hMPV_B2. hMPV_A2 can be further divided into hMPV_A2a and A2b based on phylogenetic analysis. The typical prevalence pattern of hMPV involves a shift of the predominant subtype within one or two years. However, hMPV_A2, in particular hMPV_A2b, has circulated worldwide with a several years long term high epidemic. To study this distinct epidemic behavior of hMPV_A2, we analyzed 294 sequences of partial G genes of the virus from different countries. Molecular evolutionary data indicates that hMPV_A2 evolved toward heterogeneity faster than the other subtypes. Specifically, a Bayesian skyline plot analysis revealed that hMPV_A2 has undergone a generally upward fluctuation since 1997, whereas the other subtypes experienced only one upward fluctuation. Although hMPV_A2 showed a lower value of mean dN/dS than the other subtypes, it had the largest number of positive selection sites. Meanwhile, various styles of mutation were observed in the mutation hotspots of hMPV_A2b. Bayesian phylogeography analysis also revealed two fusions of diffusion routes of hMPV_A2b in India (June 2006) and Beijing, China (June 2008). Sequences of hMPV_A2b retrieved from GenBank boosted simultaneously with the two fusions respectively, indicating that fusion of genetic transmission routes from different regions improved survival of hMPV_A2. Epidemic and evolutionary dynamics of hMPV_A2b were similar to those of hMPV_A2. Overall, our findings provide important molecular insights into hMPV epidemics and viral variation, and explain the occurrence of an atypical epidemic of hMPV_A2, particularly hMPV_A2b

    Effects of Human Respiratory Syncytial Virus, Metapneumovirus, Parainfluenza Virus 3 and Influenza Virus on CD4+ T Cell Activation by Dendritic Cells

    Get PDF
    BACKGROUND: Human respiratory syncytial virus (HRSV), and to a lesser extent human metapneumovirus (HMPV) and human parainfluenza virus type 3 (HPIV3), re-infect symptomatically throughout life without antigenic change, suggestive of incomplete immunity. One causative factor is thought to be viral interference with dendritic cell (DC)-mediated stimulation of CD4+ T cells. METHODOLOGY, PRINCIPAL FINDINGS: We infected human monocyte-derived DC with purified HRSV, HMPV, HPIV3, or influenza A virus (IAV) and compared their ability to induce activation and proliferation of autologous CD4+ T cells in vitro. IAV was included because symptomatic re-infection without antigenic change is less frequent, suggesting that immune protection is more complete and durable. We examined virus-specific memory responses and superantigen-induced responses by multiparameter flow cytometry. Live virus was more stimulatory than inactivated virus in inducing DC-mediated proliferation of virus-specific memory CD4+ T cells, suggesting a lack of strong suppression by live virus. There were trends of increasing proliferation in the order: HMPV<HRSV<HPIV3<IAV, and greater production of interferon-γ and tumor necrosis factor-α by proliferating cells in response to IAV, but differences were not significant. Exposure of DC to HRSV, HPIV3, or IAV reduced CD4+ T cell proliferation in response to secondary stimulus with superantigen, but the effect was transitory and greatest for IAV. T cell cytokine production was similar, with no evidence of Th2 or Th17 skewing. CONCLUSIONS, SIGNIFICANCE: Understanding the basis for the ability of HRSV in particular to symptomatically re-infect without significant antigenic change is of considerable interest. The present results show that these common respiratory viruses are similar in their ability to induce DC to activate CD4+ T cells. Thus, the results do not support the common model in which viral suppression of CD4+ T cell activation and proliferation by HRSV, HMPV, and HPIV3 is a major factor in the difference in re-infectability compared to IAV

    Enhanced transfection of cell lines from Atlantic salmon through nucoleofection and antibiotic selection

    Get PDF
    Background Cell lines from Atlantic salmon kidney have made it possible to culture and study infectious salmon anemia virus (ISAV), an aquatic orthomyxovirus affecting farmed Atlantic salmon. However, transfection of these cells using calcium phosphate precipitation or lipid-based reagents shows very low transfection efficiency. The Amaxa Nucleofector technology™ is an electroporation technique that has been shown to be efficient for gene transfer into primary cells and hard to transfect cell lines. Findings Here we demonstrate, enhanced transfection of the head kidney cell line, TO, from Atlantic salmon using nucleofection and subsequent flow cytometry. Depending on the plasmid promoter, TO cells could be transfected transiently with an efficiency ranging from 11.6% to 90.8% with good viability, using Amaxa's cell line nucleofector solution T and program T-20. A kill curve was performed to investigate the most potent antibiotic for selection of transformed cells, and we found that blasticidin and puromycin were the most efficient for selection of TO cells. Conclusions The results show that nucleofection is an efficient way of gene transfer into Atlantic salmon cells and that stably transfected cells can be selected with blasticidin or puromycin

    A Nuclear Localization of the Infectious Haematopoietic Necrosis Virus NV Protein Is Necessary for Optimal Viral Growth

    Get PDF
    The nonvirion (NV) protein of infectious hematopoietic necrosis virus (IHNV) has been previously reported to be essential for efficient growth and pathogenicity of IHNV. However, little is known about the mechanism by which the NV supports the viral growth. In this study, cellular localization of NV and its role in IHNV growth in host cells was investigated. Through transient transfection in RTG-2 cells of NV fused to green fluorescent protein (GFP), a nuclear localization of NV was demonstrated. Deletion analyses showed that the 32EGDL35 residues were essential for nuclear localization of NV protein, and fusion of these 4 amino acids to GFP directed its transport to the nucleus. We generated a recombinant IHNV, rIHNV-NV-ΔEGDL in which the 32EGDL35 was deleted from the NV. rIHNVs with wild-type NV (rIHNV-NV) or with the NV gene replaced with GFP (rIHNV-ΔNV-GFP) were used as controls. RTG-2 cells infected with rIHNV-ΔNV-GFP and rIHNV-NV-ΔEGDL yielded 12- and 5-fold less infectious virion, respectively, than wild type rIHNV-infected cells at 48 h post-infection (p.i.). While treatment with poly I∶C at 24 h p.i. did not inhibit replication of wild-type rIHNVs, replication rates of rIHNV-ΔNV-GFP and rIHNV-NV-ΔEGDL were inhibited by poly I∶C. In addition, both rIHNV-ΔNV and rIHNV-NV-ΔEGDL induced higher levels of expressions of both IFN1 and Mx1 than wild-type rIHNV. These data suggest that the IHNV NV may support the growth of IHNV through inhibition of the INF system and the amino acid residues of 32EGDL35 responsible for nuclear localization are important for the inhibitory activity of NV

    Increase Human Metapneumovirus Mediated Morbidity following Pandemic Influenza Infection

    Get PDF
    Human metapneumovirus (hMPV) is a recently discovered respiratory pathogen, infecting mainly young children. The infected patients suffer from influenza like symptoms (ILS). In Israel the virus is mainly circulating in February to March. Here we report on an increased rate of hMPV infection in the winter season of 2009–10. The 2009–10 infection had several unique characteristics when compared to previous seasons; it started around January and a large number of infants were infected by the virus. Genetic analysis based on the viral L and F genes of hMPV showed that only subtypes A2 and B2 circulated in Israel. Additionally, we have identified a novel variant of hMPV within subgroup A2b, which subdivide it into A2b1 and A2b2. Finally, we showed that the hMPV infection was detected in the country soon after the infection with the pandemic influenza virus had declined, that infection with the pandemic influenza virus was dominant and that it interfered with the infection of other respiratory viruses. Thus, we suggest that the unusual increase in hMPV infection observed in 2009–10 was due to the appearance of the pandemic influenza virus in the winter season prior to 2009–10
    corecore