3 research outputs found

    Set Theoretical Variants of Optimization Algorithms for System Reliability-based Design of Truss Structures

    Get PDF
    In this paper, recently developed set theoretical variants of the teaching-learning-based optimization (TLBO) algorithm and the shuffled shepherd optimization algorithm (SSOA) are employed for system reliability-based design optimization (SRBDO) of truss structures. The set theoretical variants are designed based on a simple framework in which the population of candidate solutions is divided into some number of smaller well-arranged sub-populations. In addition, the framework is applied to the Jaya algorithm, leading to a set-theoretical variant of the Jaya algorithm. So far, most of the reliability-based design optimization studies have focused on the reliability of single structural members. This is due to the fact that the optimization problems with system reliability-based constraints are computationally expensive to solve. This is especially the case of statically redundant structures, where the number of failure modes is so high that it is impractical to identify all of them. System-level reliability analysis of truss structures is carried out by the branch and bound method by which the stochastically dominant failure paths are identified within a reasonable time. At last, three numerical examples, including size optimization of truss structures, are presented to illustrate the effectiveness of the proposed SRBDO approach. The results indicate the efficiency and applicability of the set theoretical optimization algorithms to solve the SRBDO problems of truss structures

    Optimal Design of Reinforced Concrete Cantilever Retaining Walls Utilizing Eleven Meta-Heuristic Algorithms: A Comparative Study

    Get PDF
    In this paper, optimum design of reinforced concrete cantilever retaining walls is performed under static and dynamic loading conditions utilizing eleven population-based meta-heuristic algorithms. These algorithms consist of Artificial Bee Colony algorithm, Big Bang-Big Crunch algorithm, Teaching-Learning-Based Optimization algorithm, Imperialist Competitive Algorithm, Cuckoo Search algorithm, Charged System Search algorithm, Ray Optimization algorithm, Tug of War Optimization algorithm, Water Evaporation Optimization algorithm, Vibrating Particles System algorithm, and Cyclical Parthenogenesis Algorithm. Two well-known methods consisting of the Rankine and Coulomb methods are used to determine lateral earth pressures acting on cantilever retaining wall under static loading condition. In addition, Mononobe-Okabe method is employed for dynamic loading condition. The design is based on ACI 318-05 and the goal of optimization is to minimize the cost function of the cantilever retaining wall. The performance of the utilized algorithms is investigated through an optimization example of cantilever retaining wall. In addition, convergence histories of the algorithms are provided for better understanding of their performance
    corecore