199 research outputs found

    Organic Waste Torrefaction – A Review: Reactor Systems, and the Biochar Properties

    Get PDF
    Torrefaction is a thermochemical process in a narrow temperature ranging from 200 to 300°C, where primarily hemicellulose fibers are depolymerized. This process is carried out under atmospheric pressure and in anaerobic conditions; heating ratio is low (<50°C/min) and the residence time is relatively long, up to 1 h. During the process, a biomass is partially decomposed and forms different condensing and noncondensing gases. The final product is a constant substance rich in carbon, which is called a torrefied biomass—biochar and biocarbon. Currently an increase in energy demand is impacting the environment considerably. For this reason, in this chapter the organic waste torrefaction technology will be presented, including the reactor systems review. Torrefaction process may be conducted in different types of reactors, with diverse technologies. From this variety, two main groups of reactors can be distinguished, with direct and indirect heating. Direct heating group consists of reactors with multiple design, such as Multiple Hearth Furnace, microwave reactor, moving bed, vibrating belt, the reactor belt, and auger. Indirect heating reactors are less common and this group consists of rotating drum and auger reactor. All mentioned reactor types will be presented and discussed

    Waste to Carbon: Preliminary Research on Mushroom Spent Compost Torrefaction

    Get PDF
    Mushroom production in Poland is an important and dynamically developing element of diverse agriculture. Mushroom spent compost (MSC) is major waste generated during production, i.e., MSC: mushrooms is ~5:1. To date, the main use of MSC is soil application as organic fertilizer. To date, several methods of MSC treatment have been researched and developed including production of compost, bioethanol, biogas, enzyme lactase, xylo-saccharides, and hydrogen. Torrefaction may be considered a novel approach for biomass valorization. Thus, we are pioneering the potential use of MSC valorization via torrefaction. We explored valorizing the waste biomass of MSC via thermal treatment – torrefaction (‘roasting’) to produce biochar with improved fuel properties. Here for the first time, we examined and summarized the MSC torrefaction thermogravimetric analyses, fuel properties data of raw biomass of MSC and biochars generated from MSC via torrefaction. The effects of torrefaction temperature (200~300 °C), process time (20~60 min), on fuel properties of the resulting biochars were summarized. The dataset contains results of thermogravimetric analysis (TGA) as well as proximate analyses of MSC and generated biochars. The presented data are useful in determining MSC torrefaction reaction kinetics, activation energy and to further techno-economical modeling of the feasibility of MSC valorization via torrefaction. MSC torrefaction could be exploited as part of valorization resulting from a synergy between an intensive mushroom production with the efficient production of high-quality renewable fuel

    Proof-of-Concept of Spent Mushrooms Compost Torrefaction—Studying the Process Kinetics and the Influence of Temperature and Duration on the Calorific Value of the Produced Biocoal

    Get PDF
    Poland, being the 3rd largest and growing producer of mushrooms in the world, generates almost 25% of the total European production. The generation rate of waste mushroom spent compost (MSC) amounts to 5 kg per 1 kg of mushrooms produced. We proposed the MSC treatment via torrefaction for the production of solid fuel—biocoal. In this research, we examined the MSC torrefaction kinetics using thermogravimetric analyses (TGA) and we tested the influence of torrefaction temperature within the range from 200 to 300 °C and treatment time lasting from 20 to 60 min on the resulting biocoal’s (fuel) properties. The estimated value of the torrefaction activation energy of MSC was 22.3 kJ mol−1. The highest calorific value = 17.9 MJ kg−1 d.m. was found for 280 °C (60 min torrefaction time). A significant (p \u3c 0.05) influence of torrefaction temperature on HHV increase within the same group of torrefaction duration, i.e., 20, 40, or 60 min, was observed. The torrefaction duration significantly (p \u3c 0.05) increased the HHV for 220 °C and decreased HHV for 300 °C. The highest mass yield (98.5%) was found for 220 °C (60 min), while the highest energy yield was found for 280 °C (60 min). In addition, estimations of the biocoal recirculation rate to maintain the heat self-sufficiency of MSC torrefaction were made. The net quantity of biocoal (torrefied MSC; 65.3% moisture content) and the 280 °C (60 min) torrefaction variant was used. The initial mass and energy balance showed that MSC torrefaction might be feasible and self-sufficient for heat when ~43.6% of produced biocoal is recirculated to supply the heat for torrefaction. Thus, we have shown a concept for an alternative utilization of abundant biowaste (MSC). This research provides a basis for alternative use of an abundant biowaste and can help charting improved, sustainable mushroom production

    Torrefaction of Sewage Sludge: Kinetics and Fuel Properties of Biochars

    Get PDF
    We propose a ‘Waste to Carbon’ thermal transformation of sewage sludge (SS) via torrefaction to a valuable product (fuel) with a high content of carbon. One important, technological aspect to develop this concept is the determination of activation energy needed for torrefaction. Thus, this research aimed to evaluate the kinetics of SS torrefaction and determine the effects of process temperature on fuel properties of torrefied products (biochars). Torrefaction was performed using high ash content SS at six (200~300 °C) temperatures and 60 min residence (process) time. Mass loss during torrefaction ranged from 10~20%. The resulting activation energy for SS torrefaction was ~12.007 kJ·mol−1. Initial (unprocessed) SS higher heating value (HHV) was 13.5 MJ·kg−1. However, the increase of torrefaction temperature decreased HHV from 13.4 to 3.8 MJ·kg−1. Elemental analysis showed a significant decrease of the H/C ratio that occurred during torrefaction, while the O/C ratio fluctuated with much smaller differences. Although the activation energy was significantly lower compared with lignocellulosic materials, low-temperature SS torrefaction technology could be explored for further SS stabilization and utilization (e.g., dewatering and hygienization)
    • …
    corecore