38 research outputs found

    Saffron (Crocus sativus) petal as a new pharmacological target: a review

    Get PDF
    Saffron petal is the main by-product of saffron processing which produced at high level but it is not applied and thrown out. Saffron petal is containing of several compounds such as mineral agents, anthocyanins, flavonoids, glycosides, alkaloids and kaempferol. As saffron petal is cheaper and produces in large amounts compared to saffron stigma, so, it can be considered as an appropriate source for different purposes. In this review different pharmacological properties of saffron petal such as antibacterial, antispasmodic, immunomodulatory, antitussive, antidepressant, antinociceptive, hepatoprotective, renoprotective, antihypertensive, antidiabetic and antioxidant activity have been introduced. According to these properties, saffron petal can be used as an alternative or supplementary medicine in some diseases

    A review of the effects of Capsicum annuum L. and its constituent, capsaicin, in metabolic syndrome

    Get PDF
    Objective(s): Metabolic syndrome, a coexisting of high blood glucose, obesity, dyslipidemia and hypertension, is an important risk factor for cardiovascular disease occurrence and mortality. Recently, there is a rising demand for herbal drugs which have less adverse effects and have shown more beneficial effects in comparison with synthetic options. Red pepper, with the scientific name of Capsicum annuum, belongs to the Solanaceae family. The lipid-lowering, antihypertensive, antidiabetic and anti-obesity effects of C. annuum have been demonstrated in several studies. Materials and Methods:  In this review, we summarized different animal and human studies on the effect of red pepper and capsaicin on different components of metabolic syndrome which are risk factors for cardiovascular diseases (CVDs). Results: According to these studies, red pepper as well as capsaicin has ability to control of metabolic syndrome and its related disorders such as obesity, disrupted lipid profile, diabetes and its complications.Conclusion: Red pepper has beneficial effects on metabolic syndrome and can decrease the risk of mortality due to cardiovascular diseases, but still more research projects need to be done and confirm its advantageous especially in humans

    Amifostine inhibits acrylamide-induced hepatotoxicity by inhibiting oxidative stress and apoptosis

    Get PDF
    Objective(s): Acrylamide (ACR) is a toxic chemical agent that can induce hepatotoxicity through different mechanisms including oxidative stress and apoptosis. Amifostine is an important hepatoprotective and anti-oxidant compound. In this research, the hepatoprotective effect of amifostine on ACR-induced hepatotoxicity in rats has been investigated.Materials and Methods: Male Wistar rats were randomly divided into 7 groups, including: 1. Control group, 2. ACR (50 mg/kg, 11 days, IP), 3-5. ACR+ amifostine (25, 50, 100 mg/kg, 11 days, IP), 6. ACR+ N-acetyl cysteine (NAC) (200 mg/kg, 11 days, IP), and 7. Amifostine (100 mg/kg, 11 days, IP). At the end of the injection period, animals’ liver samples were collected to determine the content of glutathione (GSH), malondialdehyde (MDA), and apoptotic proteins (B-cell lymphoma 2 (Bcl2), Bcl-2-associated X protein (Bax), and cleaved caspase-3. Serum samples were also collected to measure alanine transaminase (ALT) and aspartate transaminase (AST) levels. Results: Administration of ACR increased MDA, Bax/Bcl2 ratio, cleaved caspase-3, ALT, and AST levels, and decreased GSH content compared with the control group. The administration of amifostine with ACR decreased MDA, Bax/Bcl2 ratio, cleaved caspase-3, ALT, and AST levels, and increased GSH content compared with the ACR group. Receiving NAC along with ACR reversed the alterations induced by ACR. Conclusion: This study shows that pretreatment with amifostine can reduce ACR-induced toxicity in the liver tissue of rats. Since oxidative stress is one of the most important mechanisms in ACR toxicity, amifostine probably reduces the toxicity of ACR by increasing the anti-oxidant and anti-apoptotic capacity of the hepatic cells

    Investigating the effect of telmisartan on acrylamide-induced neurotoxicity through in vitro and in vivo methods

    Get PDF
    Objective(s):  Acrylamide (ACR) is an environmental contaminant and neurotoxin. Telmisartan is an AT1 blocker that has neuroprotective properties basically through its anti-oxidant effect. The effect of telmisartan on ACR-induced neurotoxicity was investigated in this study. Materials and Methods: Male Wistar rats were randomly assigned to eight groups (n=6): 1:Control (normal saline), 2:ACR (50 mg/kg, 11 days, IP), 3:ACR+vitamin E (200 mg/kg, every other day, 11 days), 4-6:ACR+telmisartan (0.6, 1.25, and 2.5 mg/kg, 11 days, IP), 7:ACR+telmisartan (0.6 mg/kg, days 3–11), 8:Telmisartan (2.5 mg/kg, 11 days). The behavioral test and blood pressure were assessed after 11 days. Then, the levels of MDA and GSH in brain tissue were measured. The MTT assay was used to evaluate the effect of telmisartan on ACR-induced cytotoxicity.Results: Exposing PC12 cells to ACR decreased cell viability versus the control group. Pretreating PC12 cells with telmisartan (0.0125, 0.025 µM) enhanced cell viability compared with the ACR group. Compared with control samples, ACR significantly caused motor impairment, elevated MDA, and reduced GSH levels. Locomotor abnormalities were significantly ameliorated by telmisartan (0.6, 1.25 mg/kg, 11 days) and vitamin E versus the ACR group. Receiving telmisartan (0.6, 1.25, and 2.5 mg/kg) and vitamin E along with ACR decreased MDA levels and enhanced GSH content compared with the ACR group.  There was no significant difference in animal blood pressure between the groups.Conclusion: Oxidative stress has a chief role in the neurotoxicity of ACR. Telmisartan (in doses that do not affect blood pressure) ameliorated ACR-induced toxicity by inhibiting oxidative stress

    Propolis and its constituents against cardiovascular risk factors including obesity, hypertension, atherosclerosis, diabetes, and dyslipidemia: A comprehensive review

    Get PDF
    Cardiovascular diseases (CVDs) are some of the major causes of death worldwide. The modern lifestyle elevates the risk of CVDs. CVDs have several risk factors such as obesity, dyslipidemia, atherosclerosis, hypertension, and diabetes. Using herbal and natural products plays a pivotal role in the treatment of different diseases such as CVDs, diabetes, and metabolic syndrome. Propolis, a natural resinous mixture, is made by honey bees. Its main components are phenolics and terpenoid compounds such as caffeic acid phenethyl ester, chrysin, and quercetin. In this review, multiple studies regarding the pharmacological impacts of propolis and its constituents with their related mechanisms of action against mentioned CVD risk factors have been discussed in detail. Here, we used electronic databases or search engines such as Scopus, Web of Science, Pubmed, and Google Scholar without time limitations. The primary components of propolis are phenolics and terpenoid compounds such as caffeic acid phenethyl ester, chrysin and quercetin. Propolis and its constituents have been found to exhibit anti-obesity, anti-hypertension, anti-dyslipidemic, anti-atherosclerosis, and anti-diabetic effects. The vast majority of studies discussed in this review demonstrate that propolis and its constituents could have therapeutic effects against mentioned CVD risk factors via several mechanisms such as antioxidant, anti-inflammatory, reducing adipogenesis, HMG-CoA reductase inhibitory effect, inhibition of the ACE, increasing insulin secretion, NO level, etc

    Crocin prevents haloperidol-induced orofacial dyskinesia: possible an antioxidant mechanism

    Get PDF
    Objective(s):Long-term treatment with antipsychotics causes serious side effects such as tardive dyskinesia that characterized by abnormal movements in the orofacial region. Oxidative stress in the brain specific area is implicated in the pathophysiology of tardive dyskinesia. In this study the protective effect of crocin on haloperidol-induced orofacial dyskinesia was evaluated. Materials and Methods:Haloperidol (1 mg/kg, IP) and crocin (10, 20 and 40 mg/kg, IP) were administrated to rats for 21 days. Behavioral assessments such as orofacial dyskinesia movements, open field test and elevated plus maze (EPM) were evaluated every week. Malondealdehyde (MDA) and glutathione (GSH) levels in the hippocampus, cortex and striatum were also measured. Results: Haloperidol increased vacuous chewing movements (VCMs) and tongue protrusions (TPs) in rats and co-administration of crocin (20 and 40 mg/kg) significantly reduced them. Furthermore, haloperidol decreased the locomotor and exploratory activities (rearing) in the open field test and decreased the percentage of entries into open arms and the percentage of the time spent on open arms in the EPM. Pretreatment with crocin (10 mg/kg) modified haloperidol effects on these behavioral parameters. Haloperidol induced lipid peroxidation in three brain regions, whereas crocin co-administration reduced the MDA and restored the decreased GSH levels. Conclusion: Our finding suggests that oxidative stress has an important role in the development of tardive dyskinesia. Crocin showed protective effect against haloperidol induced tardive dyskinesia and as a potent naturally antioxidant could be a new and useful drug and a possible therapeutic option for the treatment of tardive dyskinesia

    Pharmacological effects of Safranal: An updated review

    Get PDF
    Safranal (a monoterpene aldehyde) is the major volatile component of saffron which is responsible for the saffron unique odor. Several studies have shown the pharmacological activities of safranal including anti-oxidant, anti-inflammatory, cardioprotective, neuroprotective, nephroprotective, gastrointestinal protective, etc.  This study was designed to review the pharmacological and medical effects of safranal and up-to-date previous knowledge. Moreover, some patents related to the pharmacological effects of safranal were gathered. Therefore, electronic databases including Web of Sciences, Scopus, and Pubmed for pharmacological effects and US patent, Patentscope, and Google Patent for patents were comprehensively searched by related English keywords from 2010 to June 2022. According to our review, most of the studies are related to the safranal effects on CNS such as antianxiety, analgesic, anticonvulsant, antiischemic, anti-tremor, memory enhancement and its protective effects on neurodegenerative disorders such as Alzheimer’s, Parkinson and Huntington diseases. Other effects of safranal are antiasthmatic, antihypertensive, antiaging, anticataract, etc. Moreover, the protective effects of this agent on metabolic syndrome and diabetic nephropathy have been shown. Different mechanisms including anti-oxidant, anti-inflammatory, muscle relaxation, antiapoptotic, and regulatory effects on the genes and proteins expression related to signaling pathways of oxidative stress, inflammation, apoptosis, proliferation, etc. are involved in safranal pharmacological effects. Some patents for the prevention and/or treatment of different diseases such as liver cancer, sleep disorder, depression,  cognitive disorder, obesity and PMS were also included. Based on the documents, safranal is considered a promising therapeutic agent although more clinical studies are needed to verify the beneficial effects of safranal in humans

    Protective effect of silymarin against chemical-induced cardiotoxicity

    No full text
    Cardiac disorders remain one of the most important causes of death in the world. Oxidative stress has been suggested as one of the molecular mechanisms involved in drug-induced cardiac toxicity. Recently, several natural products have been utilized in different studies with the aim to protect the progression of oxidative stress-induced cardiac disorders. There is a large body of evidence that administration of antioxidants may be useful in ameliorating cardiac toxicity. Silymarin, a polyphenolic flavonoid has been shown to have utility in several cardiovascular disorders. In this review, various studies in scientific databases regarding the preventive effects of silymarin against cardiotoxicity induced by chemicals were introduced. Although there are many studies representing the valuable effects of silymarin in different diseases, the number of researches relating to the possible cardiac protective effects of silymarin against drugs induced toxicity is rather limited. Results of these studies show that silymarin has a broad spectrum of cardiac protective activity against toxicity induced by some chemicals including metals, environmental pollutants, oxidative agents and anticancer drugs. Further studies are needed to establish the utility of silymarin in protection against cardiac toxicity

    Anticonvulsant effect of Satureja hortensis L. aerial parts extracts in mice

    No full text
    Objective: Regarding the anticonvulsant effects of Satureja hortensis (S. hortensis) in Avicenna’s book: canon of medicine; the present study was undertaken to evaluate the anti- eplileptic effects of S. hortensis aqueous and ethanolic aerial part extracts. Furthermore, the mechanisms of their anticonvulsant activities were also evaluated. Materials and Methods: Seizure was induced by Pentylentetrazol (PTZ) and MES (maximal electroshock) models. Mice were randomly divided into 8 groups; negative control (normal saline, 10ml/Kg), positive control (diazepam, 2 mg/kg), S. hortensis aqueous and ethanolic extracts (200, 400 and 600 mg/kg). In PTZ test, latency to the first minimal clonic seizure (MCS), latency to the first generalized tonic–clonic seizures (GTCS), the total duration of seizures and protection against mortality were evaluated. In MES test, the stretching length of extremities and protection against mortality were recorded. Results: Aqueous and ethanolic extracts (400 and 600 mg/kg) significantly increased MCS and GTCS latencies in PTZ model. Three doses of the extracts decreased the total duration of seizure. These extracts did not show any protective effects on seizure induced by MES model. In PTZ model, flumazenil, an antagonist of benzodiazepine (BZD) site in the GABAA-BZD receptor complex and 7- nitroindazole (7- NI), a selective nNOS (neuronal nitric oxide synthase) inhibitor, reduced the prolongation of seizure latency. Conclusion: S. hortensis showed anticonvulsant activity in PTZ model and this effect may be mediated, at least partly, through interacting with nitric oxide and GABAA-BZD receptor complex
    corecore