9,124 research outputs found

    Multicellular rosettes drive fluid-solid transition in epithelial tissues

    Full text link
    Models for confluent biological tissues often describe the network formed by cells as a triple-junction network, similar to foams. However, higher order vertices or multicellular rosettes are prevalent in developmental and {\it in vitro} processes and have been recognized as crucial in many important aspects of morphogenesis, disease, and physiology. In this work, we study the influence of rosettes on the mechanics of a confluent tissue. We find that the existence of rosettes in a tissue can greatly influence its rigidity. Using a generalized vertex model and effective medium theory we find a fluid-to-solid transition driven by rosette density and intracellular tensions. This transition exhibits several hallmarks of a second-order phase transition such as a growing correlation length and a universal critical scaling in the vicinity a critical point. Further, we elucidate the nature of rigidity transitions in dense biological tissues and other cellular structures using a generalized Maxwell constraint counting approach. This answers a long-standing puzzle of the origin of solidity in these systems.Comment: 11 pages, 5 figures + 8 pages, 7 figures in Appendix. To be appear in PR
    • …
    corecore