37 research outputs found
Fast and Efficient Numerical Methods for an Extended Black-Scholes Model
An efficient linear solver plays an important role while solving partial
differential equations (PDEs) and partial integro-differential equations
(PIDEs) type mathematical models. In most cases, the efficiency depends on the
stability and accuracy of the numerical scheme considered. In this article we
consider a PIDE that arises in option pricing theory (financial problems) as
well as in various scientific modeling and deal with two different topics. In
the first part of the article, we study several iterative techniques
(preconditioned) for the PIDE model. A wavelet basis and a Fourier sine basis
have been used to design various preconditioners to improve the convergence
criteria of iterative solvers. We implement a multigrid (MG) iterative method.
In fact, we approximate the problem using a finite difference scheme, then
implement a few preconditioned Krylov subspace methods as well as a MG method
to speed up the computation. Then, in the second part in this study, we analyze
the stability and the accuracy of two different one step schemes to approximate
the model.Comment: 29 pages; 10 figure
Tchebychev Polynomial Approximations for Order Boundary Value Problems
Higher order boundary value problems (BVPs) play an important role modeling
various scientific and engineering problems. In this article we develop an
efficient numerical scheme for linear order BVPs. First we convert the
higher order BVP to a first order BVP. Then we use Tchebychev orthogonal
polynomials to approximate the solution of the BVP as a weighted sum of
polynomials. We collocate at Tchebychev clustered grid points to generate a
system of equations to approximate the weights for the polynomials. The
excellency of the numerical scheme is illustrated through some examples.Comment: 21 pages, 10 figure
Spatiotemporal Orthogonal Polynomial Approximation for Partial Differential Equations
Starting with some fundamental concepts, in this article we present the
essential aspects of spectral methods and their applications to the numerical
solution of Partial Differential Equations (PDEs). We start by using Lagrange
and Techbychef orthogonal polynomials for spatiotemporal approximation of PDEs
as a weighted sum of polynomials. We use collocation at some clustered grid
points to generate a system of equations to approximate the weights for the
polynomials. We finish the study by demonstrating approximate solutions of some
PDEs in one space dimension.Comment: 9 pages, 9 figure
Recommended from our members
The Battery is the Message: Media Archaeology as an Energy Art Practice
This text is an investigation of battery technologies and planned obsolescence in the context of energy consumption, electronic waste and environmental crisis as brought on by current communication technologies. Tracing the battery’s formative histories, the text examines its messy chemistries, entanglements with portable computing to current extraction of constituent minerals of Lithium and Cobalt as bundled into contemporary media devices. Building on Hertz and Parikka’s Media Archaeology as an Art Method, the author aims to extend this research and critique into an energy art practice. Here, media archaeology becomes a method to conduct critical and artistic examinations of media technologies as concerned with energy and ecology. The text demonstrates this approach through the study of the Community Power Bank (2016-18), a community-participated energy art project in Helsinki. The project recycled Lithium-ion batteries through Do-It-Yourself (DIY) workshops, hacking and dismantling, and co-constructing power banks amidst discussion about e-waste and ecological concerns among community participants. The project also catalyzed conversations about the political economy of contemporary black-boxed technologies and the intertwined issues of energy, resource depletion and environmental impact
A multigrid method for the Helmholtz equation with optimized coarse grid corrections
We study the convergence of multigrid schemes for the Helmholtz equation,
focusing in particular on the choice of the coarse scale operators. Let G_c
denote the number of points per wavelength at the coarse level. If the coarse
scale solutions are to approximate the true solutions, then the oscillatory
nature of the solutions implies the requirement G_c > 2. However, in examples
the requirement is more like G_c >= 10, in a trade-off involving also the
amount of damping present and the number of multigrid iterations. We conjecture
that this is caused by the difference in phase speeds between the coarse and
fine scale operators. Standard 5-point finite differences in 2-D are our first
example. A new coarse scale 9-point operator is constructed to match the fine
scale phase speeds. We then compare phase speeds and multigrid performance of
standard schemes with a scheme using the new operator. The required G_c is
reduced from about 10 to about 3.5, with less damping present so that waves
propagate over > 100 wavelengths in the new scheme. Next we consider extensions
of the method to more general cases. In 3-D comparable results are obtained
with standard 7-point differences and optimized 27-point coarse grid operators,
leading to an order of magnitude reduction in the number of unknowns for the
coarsest scale linear system. Finally we show how to include PML boundary
layers, using a regular grid finite element method. Matching coarse scale
operators can easily be constructed for other discretizations. The method is
therefore potentially useful for a large class of discretized high-frequency
Helmholtz equations.Comment: Coarse scale operators are simplified and only standard smoothers
used in v3; 5 figures, 12 table
Windowed Fourier Frames to Approximate Two-Point Boundary Value Problems
Boundary value problems arise while modeling various physical and engineering reality. In this communication we investigate windowed Fourier frames focusing two-point BVPs. We approximate BVPs using windowed Fourier frames. We present some numerical results to demonstrate the efficiency of such frame functions to approximate BVPs