10,262 research outputs found

    Tchebychev Polynomial Approximations for mthm^{th} Order Boundary Value Problems

    Full text link
    Higher order boundary value problems (BVPs) play an important role modeling various scientific and engineering problems. In this article we develop an efficient numerical scheme for linear mthm^{th} order BVPs. First we convert the higher order BVP to a first order BVP. Then we use Tchebychev orthogonal polynomials to approximate the solution of the BVP as a weighted sum of polynomials. We collocate at Tchebychev clustered grid points to generate a system of equations to approximate the weights for the polynomials. The excellency of the numerical scheme is illustrated through some examples.Comment: 21 pages, 10 figure

    Fast and Efficient Numerical Methods for an Extended Black-Scholes Model

    Full text link
    An efficient linear solver plays an important role while solving partial differential equations (PDEs) and partial integro-differential equations (PIDEs) type mathematical models. In most cases, the efficiency depends on the stability and accuracy of the numerical scheme considered. In this article we consider a PIDE that arises in option pricing theory (financial problems) as well as in various scientific modeling and deal with two different topics. In the first part of the article, we study several iterative techniques (preconditioned) for the PIDE model. A wavelet basis and a Fourier sine basis have been used to design various preconditioners to improve the convergence criteria of iterative solvers. We implement a multigrid (MG) iterative method. In fact, we approximate the problem using a finite difference scheme, then implement a few preconditioned Krylov subspace methods as well as a MG method to speed up the computation. Then, in the second part in this study, we analyze the stability and the accuracy of two different one step schemes to approximate the model.Comment: 29 pages; 10 figure
    • …
    corecore