9 research outputs found
Mount Etna as a terrestrial laboratory to investigate recent volcanic activity on Venus by future missions:A comparison with Idunn Mons, Venus
The recently selected missions to Venus have opened a new era for the exploration of this planet. These missions will provide information about the chemistry of the atmosphere, the geomorphology, local-to-regional surface composition, and the rheology of the interior. One key scientific question to be addressed by these future missions is whether Venus remains volcanically active, and if so, how its volcanism is currently evolving. Hence, it is fundamental to analyze appropriate terrestrial analog sites for the study of possibly active volcanism on Venus. To this regard, we propose Mount Etna - one of the most active and monitored volcanoes on Earth - as a suitable terrestrial laboratory for remote and in-situ investigations to be performed by future missions to Venus. Being characterized by both effusive and explosive volcanic products, Mount Etna offers the opportunity to analyze multiple eruptive styles, both monitoring active volcanism and identifying the possible occurrence of pyroclastic activity on Venus. We directly compare Mount Etna with Idunn Mons, one of the most promising potentially active volcanoes of Venus. Despite the two structures show a different topography, they also show some interesting points of comparison, and in particular: a) comparable morpho-structural setting, since both volcanoes interact with a rift zone, and b) morphologically similar volcanic fields around both Mount Etna and Idunn Mons. Given its ease of access, we also propose Mount Etna as an analog site for laboratory spectroscopic studies to identify the signatures of unaltered volcanic deposits on Venus
Introducing the âanalogs for Venusâ geologically recent surfacesâ initiative: an opportunity for identifying and analyzing recently active volcano-tectonic areas of Venus trough a comparative study with terrestrial analogs
Several missions to Venus have been recently selected for launch [1â6], opening a new era for the exploration of the planet. One of the key questions that the future missions need to address is whether Venus is presently volcanically active [7â15]. Studying areas of active volcanism and tectonism on Venus is crucial to reveal clues about the geologic past of the planet, as well as provide information about the volatile content of its interior and the formation of its dense atmosphere. The âAnalogsfor VENusâ GEologically Recent Surfacesâ (AVENGERS) initiative aims to build a comprehensive database of terrestrial analog sites for the comparative study of recent and possibly on- going volcanic activity on Venus. Besides its scientific relevance, the AVENG- ERS initiative also acts as a bridge for international scientific collaboration, including the leadership and/or team members from the currently selected missions to Venus
Recommended from our members
Arecibon planetaarisen tutkan Maan lÀhiasteroidihavainnot: 2017 joulukuu - 2019 joulukuu
We successfully observed 191 near-Earth asteroids using the Arecibo Observatory's S-band planetary radar system from 2017 December through 2019 December. We present radar cross sections for 167 asteroids; circular-polarization ratios for 112 asteroids based on Doppler-echo-power spectra measurements; and radar albedos, constraints on size and spin periods, and surface-feature and shape evaluation for 37 selected asteroids using delay-Doppler radar images with a range resolution of 75 m or finer. Out of 33 asteroids with an estimated effective diameter of at least 200 m and sufficient image quality to give clues of the shape, at least 4 (âŒ12%) are binary asteroids, including 1 equal-mass binary asteroid, 2017 YE5, and at least 10 (âŒ30%) are contact-binary asteroids. For 5 out of 112 asteroids with reliable measurements in both circular polarizations, we measured circular-polarization ratios greater than 1.0, which could indicate that they are E-type asteroids, while the mean and the 1Ï standard deviation were 0.37 ± 0.23. Further, we find a mean opposite-sense circular-polarization radar albedo of 0.21 ± 0.11 for 41 asteroids (0.19 ± 0.06 for 11 S-complex asteroids). We identified two asteroids, 2011 WN15 and (505657) 2014 SR339, as possible metal-rich objects based on their unusually high radar albedos, and discuss possible evidence of water ice in 2017 YE5.Peer reviewe
Planetary RadarâState-of-the-Art Review
Planetary radar observations have provided invaluable information on the solar system through both ground-based and space-based observations. In this overview article, we summarize how radar observations have contributed in planetary science, how the radar technology as a remote-sensing method for planetary exploration and the methods to interpret the radar data have advanced in the eight decades of increasing use, where the field stands in the early 2020s, and what are the future prospects of the ground-based facilities conducting planetary radar observations and the planned spacecraft missions equipped with radar instruments. The focus of the paper is on radar as a remote-sensing technique using radar instruments in spacecraft orbiting planetary objects and in Earth-based radio telescopes, whereas ground-penetrating radar systems on landers are mentioned only briefly. The key scientific developments are focused on the search for water ice in the subsurface of the Moon, which could be an invaluable in situ resource for crewed missions, dynamical and physical characterization of near-Earth asteroids, which is also crucial for effective planetary defense, and a better understanding of planetary geology
Radar Perspective of the Aristarchus Pyroclastic Deposit and Implications for Future Missions
The Aristarchus plateau represents one of the most complex volcanic provinces on the lunar surface and is host to the largest pyroclastic deposit on the Moon. Lunar pyroclastic deposits offer a window into the Moonâs interior and represent a valuable resource to support a sustained human presence. We present a new analysis of the Aristarchus pyroclastic deposit using Mini-RF bistatic radar data at wavelengths of 4.2 and 12.6 cm. Building on previous Earth-based Arecibo Observatory radar studies at 12.6 and 70 cm, we place further constraints on the spatial extent of the pyroclastic deposit and investigate the clast size distribution and provenance of foreign material distributed within the formation. Concentrations of blocky material >0.5 cm in diameter and suspended within the upper decimeters of the pyroclastic deposit are associated with potential buried mare flows along the rim of Vallis Schröteri and discrete pockets of primary material ejected by the Aristarchus impact. Unraveling the deposit from nonpyroclastic materials and the surrounding landscape creates new constraints with which to reconstruct the volcanic history of the region. From a future mission perspective, the identification of primary Aristarchus material distributed across the plateau offers an opportunity to sample diverse volcanic lithologies within an area that could be sampled by a single Commercial Lunar Payload Services mission. In terms of lunar resource in situ utilization, such ejected material also represents a contaminant; thus, radar data provide an invaluable tool to identify pristine pyroclastic material for mission planners