11 research outputs found

    Microbiomics for enhancing electron transfer in an electrochemical system

    Get PDF
    In microbial electrochemical systems, microorganisms catalyze chemical reactions converting chemical energy present in organic and inorganic molecules into electrical energy. The concept of microbial electrochemistry has been gaining tremendous attention for the past two decades, mainly due to its numerous applications. This technology offers a wide range of applications in areas such as the environment, industries, and sensors. The biocatalysts governing the reactions could be cell secretion, cell component, or a whole cell. The electroactive bacteria can interact with insoluble materials such as electrodes for exchanging electrons through colonization and biofilm formation. Though biofilm formation is one of the major modes for extracellular electron transfer with the electrode, there are other few mechanisms through which the process can occur. Apart from biofilm formation electron exchange can take place through flavins, cytochromes, cell surface appendages, and other metabolites. The present article targets the various mechanisms of electron exchange for microbiome-induced electron transfer activity, proteins, and secretory molecules involved in the electron transfer. This review also focuses on various proteomics and genetics strategies implemented and developed to enhance the exo-electron transfer process in electroactive bacteria. Recent progress and reports on synthetic biology and genetic engineering in exploring the direct and indirect electron transfer phenomenon have also been emphasized

    Biodegradation of Congo Red Using Co-Culture Anode Inoculum in a Microbial Fuel Cell

    No full text
    Congo red is an azo dye widely used as a colouring agent in textile industries. It is a serious threat due to its carcinogenic effects. Its degradation has been challenging due to its complex yet stable structure. The present study was aimed to investigate the effective degradation of Congo red by bioremediating bacteria isolated from different environments. To investigate predominant microorganisms that degrade Congo red and its functions in microbial fuel cells (MFCs), strains isolated from cow dung (Enterococcus faecalis SUCR1) and soil (Pseudomonas aeruginosa PA1_NCHU) were used as a co-culture inocula. The remarkable results establish that E. faecalis as an excellent microbial source for the biological degradation of dye-contaminated wastewater treatment alongside bioactive treating wastewater with varied concentrations of congo red dye. The highest efficiency percentage of dye degradation was 98% after 3 days of incubation at pH 7 and 37 °C, whereas findings have shown that the decolorization at pH 5 and 6 was lower at 66% and 83.3%, respectively, under the same incubation conditions. Furthermore, the co-culture of E. faecalis SUCR1 and P. aeruginosa at a 1:1 ratio demonstrated improved power generation in MFCs. The maximum power density of 7.4 W/m3 was recorded at a 150 mg L−1 concentration of Congo red, indicating that the symbiotic relation between these bacterium resulted in improved MFCs performance simultaneous to dye degradation

    Biodegradation of Congo Red Using Co-Culture Anode Inoculum in a Microbial Fuel Cell

    No full text
    Congo red is an azo dye widely used as a colouring agent in textile industries. It is a serious threat due to its carcinogenic effects. Its degradation has been challenging due to its complex yet stable structure. The present study was aimed to investigate the effective degradation of Congo red by bioremediating bacteria isolated from different environments. To investigate predominant microorganisms that degrade Congo red and its functions in microbial fuel cells (MFCs), strains isolated from cow dung (Enterococcus faecalis SUCR1) and soil (Pseudomonas aeruginosa PA1_NCHU) were used as a co-culture inocula. The remarkable results establish that E. faecalis as an excellent microbial source for the biological degradation of dye-contaminated wastewater treatment alongside bioactive treating wastewater with varied concentrations of congo red dye. The highest efficiency percentage of dye degradation was 98% after 3 days of incubation at pH 7 and 37 °C, whereas findings have shown that the decolorization at pH 5 and 6 was lower at 66% and 83.3%, respectively, under the same incubation conditions. Furthermore, the co-culture of E. faecalis SUCR1 and P. aeruginosa at a 1:1 ratio demonstrated improved power generation in MFCs. The maximum power density of 7.4 W/m3 was recorded at a 150 mg L−1 concentration of Congo red, indicating that the symbiotic relation between these bacterium resulted in improved MFCs performance simultaneous to dye degradation

    Isolation of Biosurfactant-Producing Bacteria and Their Co-Culture Application in Microbial Fuel Cell for Simultaneous Hydrocarbon Degradation and Power Generation

    No full text
    Biosurfactant-producing microorganisms improve the efficacy of hydrocarbon biodegradation as the biosurfactant is essential in making hydrocarbons available for breakdown. The present study reports the isolation of biosurfactant-producing bacteria that can be used for crude oil remediation and to characterize the biosurfactant generated during the breakdown of crude oil. This study also reports evaluating the synergism and potentiality of biosurfactant-producing bacteria for simultaneous hydrocarbon biodegradation and power generation. Two bacterial strains (Bacillus subtilis strain B1 and Pseudomonas aeruginosa strain B2) were isolated from petroleum-contaminated soils, which are found effective in producing biosurfactants and degrading crude oil as the sole carbon source. B. subtilis B1 exhibited a higher potential for biosurfactant production and crude oil degradation than P. aeruginosa B2. The FTIR and GC-MS analysis were conducted for further characterization of the biosurfactant, which revealed that the surfactant produced by strain B1 and B2 was surfactin and rhamnolipid, respectively. The application of the B1 and B2 co-culture in microbial fuel cells (MFCs) showed synergism among them and resulted in a maximum power density production of 6.3 W/m3 with an open circuit voltage of 970 mV while degrading 2.5% v/v crude oil containing anolyte. The findings indicate that the co-culture of isolated crude oil-degrading strains has great potential for enhanced power generation and the bioremediation of hydrocarbon-contaminated environments. Moreover, the synergism of isolated strains in MFCs suggested their potent applicability in environmental, energy, and industrial sectors as an economical and feasible alternative to the existing technologies

    Isolation of Biosurfactant-Producing Bacteria and Their Co-Culture Application in Microbial Fuel Cell for Simultaneous Hydrocarbon Degradation and Power Generation

    No full text
    Biosurfactant-producing microorganisms improve the efficacy of hydrocarbon biodegradation as the biosurfactant is essential in making hydrocarbons available for breakdown. The present study reports the isolation of biosurfactant-producing bacteria that can be used for crude oil remediation and to characterize the biosurfactant generated during the breakdown of crude oil. This study also reports evaluating the synergism and potentiality of biosurfactant-producing bacteria for simultaneous hydrocarbon biodegradation and power generation. Two bacterial strains (Bacillus subtilis strain B1 and Pseudomonas aeruginosa strain B2) were isolated from petroleum-contaminated soils, which are found effective in producing biosurfactants and degrading crude oil as the sole carbon source. B. subtilis B1 exhibited a higher potential for biosurfactant production and crude oil degradation than P. aeruginosa B2. The FTIR and GC-MS analysis were conducted for further characterization of the biosurfactant, which revealed that the surfactant produced by strain B1 and B2 was surfactin and rhamnolipid, respectively. The application of the B1 and B2 co-culture in microbial fuel cells (MFCs) showed synergism among them and resulted in a maximum power density production of 6.3 W/m3 with an open circuit voltage of 970 mV while degrading 2.5% v/v crude oil containing anolyte. The findings indicate that the co-culture of isolated crude oil-degrading strains has great potential for enhanced power generation and the bioremediation of hydrocarbon-contaminated environments. Moreover, the synergism of isolated strains in MFCs suggested their potent applicability in environmental, energy, and industrial sectors as an economical and feasible alternative to the existing technologies

    Denitrification in Microbial Fuel Cells Using Granular Activated Carbon as an Effective Biocathode

    No full text
    Nitrate (NO3−-N) and nitrites (NO2−-N) are common pollutants in various water bodies causing serious threats not only to aquatic, but also to animals and human beings. In this study, we developed a strategy for efficiently reducing nitrates in microbial fuel cells (MFCs) powered by a granular activated carbon (GAC)-biocathode. GAC was developed by acclimatizing and enriching denitrifying bacteria under a redox potential (0.3 V) generated from MFCs. Thus, using the formed GAC-biocathode we continued to study their effect on denitrification with different cathode materials and circulation speeds in MFCs. The GAC-biocathode with its excellent capacitive property can actively reduce nitrate for over thirty days irrespective of the cathode material used. The stirring speed of GAC in the cathode showed a steady growth in potential generation from 0.25 V to 0.33 V. A rapid lag phase was observed when a new carbon cathode was used with enriched GAC. While a slow lag phase was seen when a stainless-steel cathode was replaced. These observations showed that effective storage and supply of electrons to the GAC plays a crucial role in the reduction process in MFCs. Electrochemical analysis of the GAC properties studied using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and zeta potential showed distinct properties with different abiotic and biocathode conditions. We found that the enrichment of electrotrophic bacteria on GAC facilitates the direct electron transfer in the cathode chamber for reducing NO3−-N in MFCs as observed by scanning electron microscopy

    Investigating the Performance of a Zinc Oxide Impregnated Polyvinyl Alcohol-Based Low-Cost Cation Exchange Membrane in Microbial Fuel Cells

    No full text
    The current study investigated the development and application of lithium (Li)-doped zinc oxide (ZnO)-impregnated polyvinyl alcohol (PVA) proton exchange membrane separator in a single chambered microbial fuel cell (MFC). Physiochemical analysis was performed via FT-IR, XRD, TEM, and AC impedance analysis to characterize thus synthesized Li-doped ZnO. PVA-ZnO-Li with 2.0% Li incorporation showed higher power generation in MFC. Using coulombic efficiency and current density, the impact of oxygen crossing on the membrane cathode assembly (MCA) area was evaluated. Different amounts of Li were incorporated into the membrane to optimize its electrochemical behavior and to increase proton conductivity while reducing biofouling. When acetate wastewater was treated in MFC using a PVA-ZnO-Li-based MCA, the maximum power density of 6.3 W/m3 was achieved. These observations strongly support our hypothesis that PVA-ZnO-Li can be an efficient and affordable separator for MFC

    Application of Low-Cost Plant-Derived Carbon Dots as a Sustainable Anode Catalyst in Microbial Fuel Cells for Improved Wastewater Treatment and Power Output

    No full text
    Microbial fuel cells (MFC) can generate electric energy from wastewater which can be enhanced further by anode catalysts. The recovery of electrons produced by oxidation of organics catalyzed by bacteria in the anode was enhanced when carbon dots(CDs) were added into the MFC. In this present study, a novel strategy for designing anode material and the fabrication of a high-efficient and environmentally friendly anode for energy generation from wastewater was reported. The CDs were synthesized by the pyrolysis of a peanut shell at the temperature of 250 °C for 2 h with a heating rate of 10 °C min−1. Thus synthesized CDs were characterized by transmission electron microscopy (TEM), UV/Vis spectroscopy, and fluorescence spectroscopy. The TEM analysis showed morphology with an average size of 1.62 nm. The UV/Vis absorbance of the CDs shows a wide absorption band without a characteristic peak. The excitation spectrum of CDs recorded at the emission wavelength of 440 nm exhibits a peak around 320 nm. CDs were investigated as an anode material in a MFC utilizing acetate as the organic substrate. The average chemical oxygen demand (COD) removal in closed circuit operation mode was 89%. The maximum power density production (7.2 W/m3) was observed in MFC containing 1 mg/cm2 CD-impregnated anode (CDsIA). The CDsIA provides the ability to promote efficient biofilm formation. These results emphasize the application of CD-based electrodes in MFCs for the simultaneous treatment of wastewater and electricity generation while also providing additional benefits

    Application of Low-Cost Plant-Derived Carbon Dots as a Sustainable Anode Catalyst in Microbial Fuel Cells for Improved Wastewater Treatment and Power Output

    No full text
    Microbial fuel cells (MFC) can generate electric energy from wastewater which can be enhanced further by anode catalysts. The recovery of electrons produced by oxidation of organics catalyzed by bacteria in the anode was enhanced when carbon dots(CDs) were added into the MFC. In this present study, a novel strategy for designing anode material and the fabrication of a high-efficient and environmentally friendly anode for energy generation from wastewater was reported. The CDs were synthesized by the pyrolysis of a peanut shell at the temperature of 250 °C for 2 h with a heating rate of 10 °C min−1. Thus synthesized CDs were characterized by transmission electron microscopy (TEM), UV/Vis spectroscopy, and fluorescence spectroscopy. The TEM analysis showed morphology with an average size of 1.62 nm. The UV/Vis absorbance of the CDs shows a wide absorption band without a characteristic peak. The excitation spectrum of CDs recorded at the emission wavelength of 440 nm exhibits a peak around 320 nm. CDs were investigated as an anode material in a MFC utilizing acetate as the organic substrate. The average chemical oxygen demand (COD) removal in closed circuit operation mode was 89%. The maximum power density production (7.2 W/m3) was observed in MFC containing 1 mg/cm2 CD-impregnated anode (CDsIA). The CDsIA provides the ability to promote efficient biofilm formation. These results emphasize the application of CD-based electrodes in MFCs for the simultaneous treatment of wastewater and electricity generation while also providing additional benefits

    Integrating Human Waste with Microbial Fuel Cells to Elevate the Production of Bioelectricity

    No full text
    Due to the continuous depletion of natural resources currently used for electricity generation, it is imperative to develop alternative energy sources. Human waste is nowadays being explored as an efficient source to produce bio-energy. Human waste is renewable and can be used as a source for an uninterrupted energy supply in bioelectricity or biofuel. Annually, human waste such as urine is produced in trillions of liters globally. Hence, utilizing the waste to produce bioenergy is bio-economically suitable and ecologically balanced. Microbial fuel cells (MFCs) play a crucial role in providing an effective mode of bioelectricity production by implementing the role of transducers. MFCs convert organic matter into energy using bio-electro-oxidation of material to produce electricity. Over the years, MFCs have been explored prominently in various fields to find a backup for providing bioenergy and biofuel. MFCs involve the role of exoelectrogens which work as transducers to convert the material into electricity by catalyzing redox reactions. This review paper demonstrates how human waste is useful for producing electricity and how this innovation would be beneficial in the long term, considering the current scenario of increasing demand for the supply of products and shortages of natural resources used to produce biofuel and bioelectricity
    corecore