7 research outputs found

    Nonordered dendritic mesoporous silica nanoparticles as promising platforms for advanced methods of diagnosis and therapies

    Get PDF
    Dendritic mesoporous silica nanoparticles (DMSNs) are a new generation of porous materials that have gained great attention compared to other mesoporous silicas due to attractive properties, including straightforward synthesis methods, modular surface chemistry, high surface area, tunable pore size, chemical inertness, particle size distribution, excellent biocompatibility, biodegradability, and high pore volume compared with conventional mesoporous materials. The last years have witnessed a blooming growth of the extensive utilization of DMSNs as an efficient platform in a broad spectrum of biomedical and industrial applications, such as catalysis, energy harvesting, biosensing, drug/gene delivery, imaging, theranostics, and tissue engineering. DMSNs are considered great candidates for nanomedicine applications due to their ease of surface functionalization for targeted and controlled therapeutic delivery, high therapeutic loading capacity, minimizing adverse effects, and enhancing biocompatibility. In this review, we will extensively detail state-of-the-art studies on recent advances in synthesis methods, structure, properties, and applications of DMSNs in the biomedical field with an emphasis on the different delivery routes, cargos, and targeting approaches and a wide range of therapeutic, diagnostic, tissue engineering, vaccination applications and challenges and future implications of DMSNs as cuttingedge technology in medicine

    Avocado-Soybean Unsaponifiables: A Panoply of Potentialities to Be Exploited

    Get PDF
    Avocado and soybean unsaponifiables (ASU) constitute vegetable extracts made from fruits and seeds of avocado and soybean oil. Characterized by its potent anti-inflammatory effects, this ASU mixture is recommended to act as an adjuvant treatment for osteoarthritic pain and slow-acting symptomatic treatment of hip and knee osteoarthritis; autoimmune diseases; diffuse scleroderma and scleroderma-like states (e.g., morphea, sclerodactyly, scleroderma in bands). Besides, it was reported that it can improve the mood and quality of life of postmenopausal women in reducing menopause-related symptoms. This article aims to summarize the studies on biological effects of the avocado-soybean unsaponifiable, its chemical composition, pharmacotherapy as well as applications in auto-immune, osteoarticular and menopausal disorders. Finally, we will also discuss on its safety, toxicological and regulatory practices

    Nonordered dendritic mesoporous silica nanoparticles as promising platforms for advanced methods of diagnosis and therapies

    Get PDF
    Dendritic mesoporous silica nanoparticles (DMSNs) are a new generation of porous materials that have gained great attention compared to other mesoporous silicas due to attractive properties, including straightforward synthesis methods, modular surface chemistry, high surface area, tunable pore size, chemical inertness, particle size distribution, excellent biocompatibility, biodegradability, and high pore volume compared with conventional mesoporous materials. The last years have witnessed a blooming growth of the extensive utilization of DMSNs as an efficient platform in a broad spectrum of biomedical and industrial applications, such as catalysis, energy harvesting, biosensing, drug/gene delivery, imaging, theranostics, and tissue engineering. DMSNs are considered great candidates for nanomedicine applications due to their ease of surface functionalization for targeted and controlled therapeutic delivery, high therapeutic loading capacity, minimizing adverse effects, and enhancing biocompatibility. In this review, we will extensively detail state-of-the-art studies on recent advances in synthesis methods, structure, properties, and applications of DMSNs in the biomedical field with an emphasis on the different delivery routes, cargos, and targeting approaches and a wide range of therapeutic, diagnostic, tissue engineering, vaccination applications and challenges and future implications of DMSNs as cutting-edge technology in medicine

    The The potential role of clinical pharmacist in the practice of heart transplantation

    No full text
    Due to the complexity of heart transplant procedure and risk of organ rejection, most heart transplant patients receive multiple medications such as antibiotics, antifungals, and immunosuppressants. Since some medications have narrow therapeutic indexes, more attention is needed by the clinical pharmacists to solve and reduce medication-related problems. Pharmacists can play an essential role in assisting patients and physicians in receiving better treatment with the lowest risk of medication errors. The purpose of this study was to investigate the types and quality of clinical pharmacist recommendations, the recommendations acceptance rate, and the outcomes related to clinical pharmacist interventions in heart transplant patients. The study was conducted at National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Dr.Masih Daneshvari Hospital, a university affiliated hospital, Tehran, Iran. Main outcome measures included determination of the quality of clinical pharmacist recommendations, physician acceptance rate and the effects of recommendations on patients’ clinical outcomes. Clinical pharmacist recommendations were divided into ten categories, and physicians’ acceptance rate for each recommendation was recorded. The quality of pharmacist recommendations was also classified into six categories. The total number of recommendations that were recorded for 46 patients was 344, about 7.47 recommendations per patient. Dose adjustment recommendations were the most recommendations that were made (n=100, 29.06 %). However, this type of recommendation had the lowest physician acceptance rate (62%). Antibiotics had the least acceptance rate in dose adjustment recommendations (40%). Clinical pharmacist recommendations in the drug interaction category prevented 265 moderate and 28 severe interactions, respectively. Clinical pharmacist made 27 (7.84%) extreme significant recommendations and 88 (25.58%) significant recommendations. Clinical pharmacists could have a critical role in optimizing medication regimens and minimizing drug interactions as well as adverse reactions in transplant patient care and their treatment programs

    Naringenin nano-delivery systems and their therapeutic applications

    No full text
    Naringenin (NRG) is a polyphenolic phytochemical belonging to the class of flavanones and is widely distributed in citrus fruits and some other fruits such as bergamot, tomatoes, cocoa, and cherries. NRG presents several interesting pharmacological properties, such as anti-cancer, antioxidant, and anti-inflammatory activities. However, the therapeutic potential of NRG is hampered due to its hydrophobic nature, which leads to poor bioavailability. Here, we review a wide range of nanocarriers that have been used as delivery systems for NRG, including polymeric nanoparticles, micelles, liposomes, solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), nanosuspensions, and nanoemulsions. These nanomedicine formulations of NRG have been applied as a potential treatment for several diseases, using a wide range of in vitro, ex vivo, and in vivo models and different routes of administration. From this review, it can be concluded that NRG is a potential therapeutic option for the treatment of various diseases such as cancer, neurological disorders, liver diseases, ocular disorders, inflammatory diseases, skin diseases, and diabetes when formulated in the appropriate nanocarriers

    Co-delivery of letrozole and cyclophosphamide via folic acid-decorated nanoniosomes for breast cancer therapy : synergic effect, augmentation of cytotoxicity and apoptosis gene expression

    No full text
    Breast cancer is one of the most prevalent causes of cancer mortality in women. In order to increase patient prognosis and survival rates, new technologies are urgently required to deliver therapeutics in a more effective and efficient manner. Niosome nanoparticles have been recently employed as therapeutic platforms capable of loading and carrying drugs within their core for both mono and combination therapy. Here, niosome-based nanoscale carriers were investigated as a targeted delivery system for breast cancer therapy. The platform developed consists of niosomes loaded with letrozole and cyclophosphamide (NLC) and surface-functionalized with a folic-acid-targeting moiety (NLCPFA). Drug release from the formulated particles exhibited pH-sensitive properties in which the niosome showed low and high release in physiological and cancerous conditions, respectively. The results revealed a synergic effect in cytotoxicity by co-loading letrozole and cyclophosphamide with an efficacy increment in NLCPFA use in comparison with NLC. The NLCPFA resulted in the greatest drug internalization compared to the non-targeted formulation and the free drug. Additionally, downregulation of cyclin-D, cyclin-E, MMP-2, and MMP-9 and upregulating the expression of caspase-3 and caspase-9 genes were observed more prominently in the nanoformulation (particularly for NLCPFA) compared to the free drug. This exciting data indicated that niosome-based nanocarriers containing letrozole and cyclophosphamide with controlled release could be a promising platform for drug delivery with potential in breast cancer therapy
    corecore