7 research outputs found

    Investigations on the development of a novel hybrid sensor for environmental monitoring applications.

    Get PDF
    Heavy metal toxicity is a major environmental problem world-wide. Increased spreading and high concentration levels of the toxic heavy metals in water environments have posed a severe threat to human health and the ecosystem. Over the years, to improve the drinking water quality standards, safe threshold concentrations of these highly toxic pollutants are constantly being lowered by the governmental and environmental bodies. Current instrumental techniques used to detect these low levels of heavy metal ions are laboratory based, use sophisticated instruments, expensive, time consuming and require trained personnel. There is a constant need for the development of in-situ, rapid, highly sensitive and selective sensors to monitor the very low concentration levels. Various approaches for improving sensitivity and selectivity have been investigated over the years involving multiple detection techniques. In general, optical approaches provide higher sensitivity along with simplicity while electrochemical sensors provide better selectivity. In the last decade, nanomaterials have emerged as a key element in their sensitivity improvement. Combining all these advantages, a novel hybrid sensor has been envisaged integrating optical and electrical fields in addition to nanomaterials. This thesis reports investigations on enhancing the sensitivity/selectivity through optical, nanomaterials and electrochemical routes, and then integrating these to realise a hybrid sensor. A novel optical sensor has been developed using the phenomena of evanescent waves in optical fibre with dithizone to detect heavy metal ions. A U-bent sensor geometry has been investigated to enhance the optical sensitivity of the sensor through higher evanescent field near the surface. Further, optical field confinement to the surface has been investigated through thin film coating to improve the sensitivity. A new inverted trench design based sensor has been developed, and sensitivity enhancement has been achieved through this novel design and confirmed using modelling work accompanied by experimental results. Large surface to volume ratio of nanomaterials, such as ZnO nanowires, on the sensor surface can provide enhanced surface interactions leading to higher sensitivity. But, surfaces modified with ZnO nanostructures tend to be hydrophobic in nature. A new remote and non-contact method to tune the wettability of the ZnO nanostructures using LEDs has been developed. Higher sensitivity has been achieved by tuning the wettability of ZnO nanowires using the developed method. An electrochemical sensor has been developed in order to understand the potential effects of the electric field on the near surface molecular dynamics and thereby, effects on the optical detection. Effects of parameters such as deposition time, scan frequency, concentration, electrode materials and their surface area have been investigated to improve the sensitivity and selectivity. Multi-ions selectivity has been achieved by simultaneous detection of copper, mercury and lead ions in buffer solution. Higher sensitivity has been obtained by modifying the gold electrode using graphene flakes. Further, to integrate the optical field with this sensor to realize the hybrid sensor, thickness of the gold electrode has been optimised to allow the penetration of evanescent field onto the electrode surface. Under optimised conditions evanescent field resonantly couples to the surface plasmons of the gold electrode. Computational investigations have been carried out to study the effect of number of graphene layers on the sensitivity of the surface plasmon resonance (SPR) based optical sensor integrated with the electrochemical sensor. Preliminary investigations on the developed hybrid sensor show that the electric field complements the optical field. Investigations have shown that application of electric field enhances the sensitivity for optical detection by attracting more ions on the electrode and also, provides the multi-ion selectivity. These investigations have opened up new possibilities for the real-time monitoring of highly sensitive and selective molecular interactions, showing strong potential in a range of applications areas such as environmental sensing, biosensing and agricultural sensing

    Design optimization of Cassegrain telescope for remote explosive trace detection.

    Get PDF
    The past three years have seen a global increase in explosive-based terror attacks. The widespread use of improvised explosives and anti-personnel landmines have caused thousands of civilian casualties across the world. Current scenario of globalized civilization threat from terror drives the need to improve the performance and capabilities of standoff explosive trace detection devices to be able to anticipate the threat from a safe distance to prevent explosions and save human lives. In recent years, laser-induced breakdown spectroscopy (LIBS) is an emerging approach for material or elemental investigations. All the principle elements on the surface are detectable in a single measurement using LIBS and hence, a standoff LIBS based method has been used to remotely detect explosive traces from several to tens of metres distance. The most important component of LIBS based standoff explosive trace detection system is the telescope which enables remote identification of chemical constituents of the explosives. However, in a compact LIBS system where Cassegrain telescope serves the purpose of laser beam delivery and light collection, need a design optimization of the telescope system. This paper reports design optimization of a Cassegrain telescope to detect explosives remotely for LIBS system. A design optimization of Schmidt corrector plate was carried out for Nd:YAG laser. Effect of different design parameters was investigated to eliminate spherical aberration in the system. Effect of different laser wavelengths on the Schmidt corrector design was also investigated for the standoff LIBS system

    Fibre optic sensor to detect heavy metal pollutants in water environments.

    Get PDF
    Heavy metal ion pollution emerges as a potential threat to humankind and the ecosystem due to their increased spreading into the environment. Detection of highly toxic heavy metal ions requires rapid, simple, sensitive and selective detection methods in water environments. Optical fibre sensors facilitate the remote, continuous and in-situ detection due to their inherent properties. Herein, we report a fibre optic sensor based on evanescent wave absorption to detect heavy metal ions in water environments. Fibre optic sensor has been developed by coating dithizone on the surface of an optical fibre. Selectivity of the mercury, copper and chromium ions using dithizone has been illustrated using spectroscopy based detection approach. Effect of pH on the sensor has been investigated. The possibility of simultaneous multi-ion detection has been investigated. Copper ions concentrations in water has been detected using the developed fibre optic sensor

    Design of optical fibre based highly sensitive acoustic sensor for underwater applications.

    Get PDF
    Fibre optic sensing is a key technology for a variety of underwater sensing and monitoring applications. Fibre optic acoustic sensors are mainly based on interferometric detection approach where the acoustic pressure-induced phase shift of light has been used as sensing principle. Recently, fibre optic acoustic sensors based on speciality fibres like Photonic Crystal Fibre (PCF) were reported. However, interferometry based detection approaches amongst all these fibre optics sensors are intensity based and therefore susceptible to light power fluctuations and require a complex instrumentation related to signal detection. Besides, wavelength based detection approach using FBG (Fibre Bragg Grating) offers significant advantages over the conventional approach. FBG sensors were reported to have higher performance for underwater acoustic sensing applications. This paper reports a novel design of an underwater acoustic pressure sensor using a combination of PCF and FBG to provide high sensitivity. Theoretical investigations were carried out on the PCF-FBG sensor to study the effect of applied pressure and induced strain on the FBG inscribed in the core of PCF. Effect of light confinement in PCF was studied for different geometrical parameters and 4-ring PCF structure was reported. Further, sensitivity enhancement was proposed utilizing air hole structure of the PCF to enhance the impact of acoustic pressure on the induced strain in FBG

    LED-controlled tuning of ZnO nanowires' wettability for biosensing applications.

    Get PDF
    Background: Wettability is an important property of solid materials which can be controlled by surface energy. Dynamic control over the surface wettability is of great importance for biosensing applications. Zinc oxide (ZnO) is a biocompatible material suitable for biosensors and microfluidic devices. Nanowires of ZnO tend to show a hydrophobic nature which decelerates the adhesion or adsorption of biomolecules on the surface and, therefore, limits their application. Methods: Surface wettability of the ZnO nanowires can be tuned using light irradiation. However, the control over wettability using light-emitting diodes (LEDs) and the role of wavelength in controlling the wettability of ZnO nanowires are unclear. This is the first report on LED-based wettability control of nanowires, and it includes investigations on tuning the desired wettability of ZnO nanowires using LEDs as a controlling tool. Results: The investigations on spectral properties of the LED emission on ZnO nanowires wettability have shown strong dependency on the spectral overlap of LED emission on ZnO absorption spectra. Results indicate that LEDs offer an advanced control on dynamically tuning the wettability of ZnO nanowires. Conclusion: The spectral investigations have provided significant insight into the role of irradiating wavelength of light and irradiation time on the surface wettability of ZnO nanowires. This process is suitable to realize on chip based integrated sensors and has huge potential for eco-friendly biosensing and environmental sensing applications

    Theoretical investigation of positional influence of FBG sensors for structural health monitoring of offshore structures.

    Get PDF
    Fibre Bragg Grating (FBG) is a key technology for condition monitoring of different offshore oil and gas structures. FBG sensors are used to sense different physical parameters such as strain, temperature, vibration, etc. This paper investigates the effect of FBG sensor positions on the reflected sensing signal, to optimise the sensor positioning plan for structural health monitoring of offshore structures. Theoretical investigations were carried out on a cantilever beam to analyze the strain effects. Effect of different cantilever beam shapes, materials and their thickness on strain was investigated. Theoretical studies were also carried out to evaluate the strain sensitivities of FBG sensors. Furthermore, micrometer displacement based strain analysis of cantilever beam was carried out using FBG sensors and electrical strain gauges to study the positional influence and compared it with the theoretical results obtained

    Highly textured and transparent RF sputtered Eu2O3 doped ZnO films.

    Get PDF
    Background: Zinc oxide (ZnO) is a wide, direct band gap II-VI oxide semiconductor. ZnO has large exciton binding energy at room temperature, and it is a good host material for obtaining visible and infrared emission of various rare-earth ions. Methods: Europium oxide (Eu2O3) doped ZnO films are prepared on quartz substrate using radio frequency (RF) magnetron sputtering with doping concentrations 0, 0.5, 1, 3 and 5 wt%. The films are annealed in air at a temperature of 773 K for 2 hours. The annealed films are characterized using X-ray diffraction (XRD), micro-Raman spectroscopy, atomic force microscopy, ultraviolet (UV)-visible spectroscopy and photoluminescence (PL) spectroscopy. Results: XRD patterns show that the films are highly c-axis oriented exhibiting hexagonalwurtzite structure of ZnO. Particle size calculations using Debye-Scherrer formula show that average crystalline size is in the range 15 22 nm showing the nanostructured nature of the films. The observation of low- and high-frequency E2 modes in the Raman spectra supports the hexagonal wurtzite structure of ZnO in the films. The surface morphology of the Eu2O3 doped films presents dense distribution of grains. The films show good transparency in the visible region. The band gaps of the films are evaluated using Tauc plot model. Optical constants such as refractive index, dielectric constant, loss factor, and so on are calculated using the transmittance data. The PL spectra show both UV and visible emissions. Conclusion: Highly textured, transparent, luminescent Eu2O3 doped ZnO films have been synthesized using RF magnetron sputtering. The good optical and structural properties and intense luminescence in the ultraviolet and visible regions from the films suggest their suitability for optoelectronic applications
    corecore