9 research outputs found
Recommended from our members
The Evolving Treatment of Diabetic Retinopathy.
Purpose: To review the current therapeutic options for the management of diabetic retinopathy (DR) and diabetic macular edema (DME) and examine the evidence for integration of laser and pharmacotherapy.
Methods: A review of the PubMed database was performed using the search terms diabetic retinopathy, diabetic macular edema, neovascularization, laser photocoagulation, intravitreal injection, vascular endothelial growth factor (VEGF), vitrectomy, pars plana vitreous surgery, antiangiogenic therapy. With additional cross-referencing, this yielded 835 publications of which 301 were selected based on content and relevance.
Results: Many recent studies have evaluated the pharmacological, laser and surgical therapeutic strategies for the treatment and prevention of DR and DME. Several newer diagnostic systems such as optical coherence tomography (OCT), microperimetry, and multifocal electroretinography (mfERG) are also assisting in further refinements in the staging and classification of DR and DME. Pharmacological therapies for both DR and DME include both systemic and ocular agents. Systemic agents that promote intensive glycemic control, control of dyslipidemia and antagonists of the renin-angiotensin system demonstrate beneficial effects for both DR and DME. Ocular therapies include anti-VEGF agents, corticosteroids and nonsteroidal anti-inflammatory drugs. Laser therapy, both as panretinal and focal or grid applications continue to be employed in management of DR and DME. Refinements in laser devices have yielded more tissue-sparing (subthreshold) modes in which many of the benefits of conventional continuous wave (CW) lasers can be obtained without the adverse side effects. Recent attempts to lessen the burden of anti-VEGF injections by integrating laser therapy have met with mixed results. Increasingly, vitreoretinal surgical techniques are employed for less advanced stages of DR and DME. The development and use of smaller gauge instrumentation and advanced anesthesia agents have been associated with a trend toward earlier surgical intervention for diabetic retinopathy. Several novel drug delivery strategies are currently being examined with the goal of decreasing the therapeutic burden of monthly intravitreal injections. These fall into one of the five categories: non-biodegradable polymeric drug delivery systems, biodegradable polymeric drug delivery systems, nanoparticle-based drug delivery systems, ocular injection devices and with sustained release refillable devices. At present, there remains no one single strategy for the management of the particular stages of DR and DME as there are many options that have not been rigorously tested through large, randomized, controlled clinical trials.
Conclusion: Pharmacotherapy, both ocular and systemic, will be the primary mode of intervention in the management of DR and DME in many cases when cost and treatment burden are less constrained. Conventional laser therapy has become a secondary intervention in these instances, but remains a first-line option when cost and treatment burden are more constrained. Results with subthreshold laser appear promising but will require more rigorous study to establish its role as adjunctive therapy. Evidence to support an optimal integration of the various treatment options is lacking. Central to the widespread adoption of any therapeutic regimen for DR and DME is substantiation of safety, efficacy, and cost-effectiveness by a body of sound clinical trials
Imaging diabetic retinal disease: clinical imaging requirements
Diabetic retinopathy (DR) is a sight-threatening complication of diabetes mellitus (DM) and it contributes substantially to the burden of disease globally. During the last decades, the development of multiple imaging modalities to evaluate DR, combined with emerging treatment possibilities, has led to the implementation of large-scale screening programmes resulting in improved prevention of vision loss. However, not all patients are able to participate in such programmes and not all are at equal risk of DR development and progression. In this review, we discuss the relevance of the currently available imaging modalities for the evaluation of DR: colour fundus photography (CFP), ultrawide-field photography (UWFP), fundus fluorescein angiography (FFA), optical coherence tomography (OCT), OCT angiography (OCTA) and functional testing. Furthermore, we suggest where a particular imaging technique of DR may aid the evaluation of the disease in different clinical settings. Combining information from various imaging modalities may enable the design of more personalized care including the initiation of treatment and understanding the progression of disease more adequately
Effect of Adding Dexamethasone to Continued Ranibizumab Treatment in Patients With Persistent Diabetic Macular Edema
In this phase 2 randomized clinical trial, the Diabetic Retinopathy Clinical Research Network compares continued ranibizumab treatment alone vs ranibizumab plus dexamethasone in patients with persistent diabetic macular edema
Effect of adding dexamethasone to continued ranibizumab treatment in patients with persistent diabetic macular edema: A DRCR network phase 2 randomized clinical trial
© 2017 American Medical Association. All rights reserved. IMPORTANCE Some eyes have persistent diabetic macular edema (DME) following anti-vascular endothelial growth factor (anti-VEGF) therapy for DME. Subsequently adding intravitreous corticosteroids to the treatment regimen might result in better outcomes than continued anti-VEGF therapy alone. OBJECTIVE To compare continued intravitreous ranibizumab alone with ranibizumab plus intravitreous dexamethasone implant in eyes with persistent DME. DESIGN, SETTING, AND PARTICIPANTS Phase 2 multicenter randomized clinical trial conducted at 40 US sites in 129 eyes from 116 adults with diabetes between February 2014 and December 2016. Eyes had persistent DME, with visual acuity of 20/32 to 20/320 after at least 3 anti-VEGF injections before a run-in phase, which included an additional 3 monthly 0.3-mg ranibizumab injections. Data analysis was according to intent to treat. INTERVENTIONS Following the run-in phase, study eyes that had persistent DME and were otherwise eligible were randomly assigned to receive 700 μg of dexamethasone (combination group, 65 eyes) or sham treatment (ranibizumab group, 64 eyes) in addition to continued 0.3-mg ranibizumab in both treatment arms as often as every 4 weeks based on a structured re-treatment protocol. MAIN OUTCOMES AND MEASURES The primary outcomewas change in mean visual acuity letter score at 24 weeks as measured by the electronic Early Treatment Diabetic Retinopathy Study (E-ETDRS). The principal secondary outcome was change in mean central subfield thickness as measured with the use of optical coherence tomography. RESULTS Of the 116 randomized patients, median age was 65 years (interquartile range [IQR], 58-71 years); 50.9%were female and 60.3%were white. Mean (SD) improvement in visual acuity from randomization was 2.7 (9.8) letters in the combination group and 3.0 (7.1) letters in the ranibizumab group, with the adjusted treatment group difference (combination minus ranibizumab) of -0.5 letters (95%CI, -3.6 to 2.5; 2-sided P = .73). Mean (SD) change in central subfield thickness in the combination group was -110 (86) μm compared with -62 (97) μm for the ranibizumab group (adjusted difference, -52; 95%CI, -82 to -22; 2-sided P \u3c .001). Nineteen eyes (29%) in the combination group experienced increased intraocular pressure or initiated treatment with antihypertensive eyedrops compared with 0 in the ranibizumab group (2-sided P \u3c .001). CONCLUSIONS AND RELEVANCE Although its use is more likely to reduce retinal thickness and increase intraocular pressure, the addition of intravitreous dexamethasone to continued ranibizumab therapy does not improve visual acuity at 24 weeks more than continued ranibizumab therapy alone among eyes with persistent DME following anti-VEGF therapy. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT0194586
Efficacy and safety of avacincaptad pegol in patients with geographic atrophy (GATHER2): 12-month results from a randomised, double-masked, phase 3 trial
Background Geographic atrophy is an advanced form of dry age-related macular degeneration that can lead to irreversible vision loss and high burden of disease. We aimed to assess efficacy and safety of avacincaptad pegol 2 mg in reducing geographic atrophy lesion growth.Methods GATHER2 is a randomised, double-masked, sham-controlled, 24-month, phase 3 trial across 205 retina clinics, research hospitals, and academic institutions globally. To be eligible, patients had to be aged 50 years or older with non-centrepoint-involving geographic atrophy and best corrected visual acuity between 20/25 and 20/320 in the study eye. Eligible patients were randomly assigned (1:1) to monthly avacincaptad pegol 2 mg administered as a 100 mu L intravitreal injection or sham for the first 12 months. Randomisation was performed using an interactive response technology system with stratification by factors known to be of prognostic importance in age-related macular degeneration. Patients, investigators, study centre staff, sponsor personnel, and data analysts were masked to treatment allocation. The primary endpoint was geographic atrophy lesion size measured by fundus autofluorescence at baseline, month 6, and month 12. Efficacy and safety analyses were done in the modified intention-to-treat and safety populations, respectively. This trial is registered with ClinicalTrials.gov, NCT04435366.Findings Between June 22, 2020, and July 23, 2021, 1422 patients were screened for eligibility, of whom 448 were enrolled and randomly assigned to avacincaptad pegol 2 mg (n=225) or sham (n=223). One patient in the sham group did not receive study treatment and was excluded from analyses. There were 154 (68%) female patients and 71 (32%) male patients in the avacincaptad pegol 2 mg group, and 156 (70%) female patients and 66 (30%) male patients in the sham group. From baseline to month 12, the mean rate of square-root-transformed geographic atrophy area growth was 0 center dot 336 mm/year (SE 0 center dot 032) with avacincaptad pegol 2 mg and 0 center dot 392 mm/year (0 center dot 033) with sham, a difference in growth of 0 center dot 056 mm/year (95% CI 0 center dot 016-0 center dot 096; p=0 center dot 0064), representing a 14% difference between the avacincaptad pegol 2 mg group and the sham group. Ocular treatment-emergent adverse events in the study eye occurred in 110 (49%) patients in the avacincaptad pegol 2 mg group and 83 (37%) in the sham group. There were no endophthalmitis, intraocular inflammation, or ischaemic optic neuropathy events over 12 months. To month 12, macular neovascularisation in the study eye occurred in 15 (7%) patients in the avacincaptad pegol 2 mg group and nine (4%) in the sham group, with exudative macular neovascularisation occurring in 11 (5%) in the avacincaptad pegol 2 mg group and seven (3%) in the sham group.Interpretation Monthly avacincaptad pegol 2 mg was well tolerated and showed significantly slower geographic atrophy growth over 12 months than sham treatment, suggesting that avacincaptad pegol might slow disease progression and potentially change the trajectory of disease for patients with geographic atrophy.Funding Iveric Bio, An Astellas Company.Copyright (c) 2023 Elsevier Ltd. All rights reserved