4 research outputs found

    Comparison of nano on-chip dielectric ridge waveguides with graded junction

    No full text
    A simulation of ridge waveguide with graded junctions is presented. Transmission losses are plotted for non-graded, linearly graded and parabolically graded junctions at 530 THz for a 1micron waveguide length. Simulations show little difference in performance of non-graded and linearly graded waveguides. Parabolically graded perform worst among all

    Assessment of COVID-19 data reporting in 100+ websites and apps in India.

    No full text
    India is among the top three countries in the world both in COVID-19 case and death counts. With the pandemic far from over, timely, transparent, and accessible reporting of COVID-19 data continues to be critical for India's pandemic efforts. We systematically analyze the quality of reporting of COVID-19 data in over one hundred government platforms (web and mobile) from India. Our analyses reveal a lack of granular data in the reporting of COVID-19 surveillance, vaccination, and vacant bed availability. As of 5 June 2021, age and gender distribution are available for less than 22% of cases and deaths, and comorbidity distribution is available for less than 30% of deaths. Amid rising concerns of undercounting cases and deaths in India, our results highlight a patchy reporting of granular data even among the reported cases and deaths. Furthermore, total vaccination stratified by healthcare workers, frontline workers, and age brackets is reported by only 14 out of India's 36 subnationals (states and union territories). There is no reporting of adverse events following immunization by vaccine and event type. By showing what, where, and how much data is missing, we highlight the need for a more responsible and transparent reporting of granular COVID-19 data in India

    Contact tracing of COVID-19 in Karnataka, India: Superspreading and determinants of infectiousness and symptomatic infection.

    No full text
    BackgroundIndia has experienced the second largest outbreak of COVID-19 globally, yet there is a paucity of studies analysing contact tracing data in the region which can optimise public health interventions (PHI's).MethodsWe analysed contact tracing data from Karnataka, India between 9 March and 21 July 2020. We estimated metrics of transmission including the reproduction number (R), overdispersion (k), secondary attack rate (SAR), and serial interval. R and k were jointly estimated using a Bayesian Markov Chain Monte Carlo approach. We studied determinants of risk of further transmission and risk of being symptomatic using Poisson regression models.FindingsUp to 21 July 2020, we found 111 index cases that crossed the super-spreading threshold of ≥8 secondary cases. Among 956 confirmed traced cases, 8.7% of index cases had 14.4% of contacts but caused 80% of all secondary cases. Among 16715 contacts, overall SAR was 3.6% [95% CI, 3.4-3.9] and symptomatic cases were more infectious than asymptomatic cases (SAR 7.7% vs 2.0%; aRR 3.63 [3.04-4.34]). As compared to infectors aged 19-44 years, children were less infectious (aRR 0.21 [0.07-0.66] for 0-5 years and 0.47 [0.32-0.68] for 6-18 years). Infectors who were confirmed ≥4 days after symptom onset were associated with higher infectiousness (aRR 3.01 [2.11-4.31]). As compared to asymptomatic cases, symptomatic cases were 8.16 [3.29-20.24] times more likely to cause symptomatic infection in their secondary cases. Serial interval had a mean of 5.4 [4.4-6.4] days, and case fatality rate was 2.5% [2.4-2.7] which increased with age.ConclusionWe found significant heterogeneity in the individual-level transmissibility of SARS-CoV-2 which could not be explained by the degree of heterogeneity in the underlying number of contacts. To strengthen contact tracing in over-dispersed outbreaks, testing and tracing delays should be minimised and retrospective contact tracing should be implemented. Targeted measures to reduce potential superspreading events should be implemented. Interventions aimed at children might have a relatively small impact on reducing transmission owing to their low symptomaticity and infectivity. We propose that symptomatic cases could cause a snowballing effect on clinical severity and infectiousness across transmission generations; further studies are needed to confirm this finding
    corecore