12 research outputs found

    IMPACT OF SEASONAL CHANGES IN FRESHWATER PHYTOPLANKTON AND ZOOPLANKTON BIODIVERSITY AT VALANKULAM LAKE, COIMBATORE DISTRICT, TAMIL NADU, INDIA

    Get PDF
    The plankton communities are important source of food for the aquatic organisms, and if any undesirable changes in aquatic environment may affect plankton diversity and density. Therefore, assessment of planktonic communities in the freshwater ecosystems is essential because they serve as bio-indicators of water quality parameters. Hence, the present research was focused to evaluate the freshwater phytoplankton and zooplankton diversity and their abundance in Valankulam lake (Lat. 10.59° N and Long.76.57° E), at Coimbatore city, Tamil Nadu, India. Results from the study revealed that a total of 77 species of phytoplankton and zooplankton were recorded, under 37 families and 46 genera. In addition to that, a total of 43 phytoplankton species were recorded under 25 families and 30 genera, (which includes; 15 species of Cyanophyceae, 17 species of Chlorophyceae, 08 species of Bacillariophyceae, 03 species of Euglenophyceae). and a total of 34 species of zooplankton were recorded under 12 families and 17 genera, (which includes 13 species of Rotifera, 09 species of Cladocera, 08 species of Copepoda and 04 species of Ostracoda). The maximum plankton diversity was observed during the monsoon season and the minimum in the summer season. Results from study revealed the ecological status of the lake is categorized as moderately polluted due to the presence of municipal waste and industrial discharges into the lake water. Therefore, the assessment of planktonic communities in water bodies will be useful to monitor and maintain the water quality parameters and wealth of aquatic biota in the aquatic ecosystem

    Impact of seasonal changes in freshwater phytoplankton and zooplankton biodiversity at Valankulam lake, Coimbatore district, Tamil Nadu, India

    Get PDF
    The plankton communities are important source of food for the aquatic organisms, and if any undesirable changes in aquatic environment may affect plankton diversity and density. Therefore, assessment of planktonic communities in the freshwater ecosystems is essential because they serve as bio-indicators of water quality parameters. Hence, the present research was focused to evaluate the freshwater phytoplankton and zooplankton diversity and their abundance in Valankulam lake (Lat. 10.59° N and Long.76.57° E), at Coimbatore city, Tamil Nadu, India. Results from the study revealed that a total of 77 species of phytoplankton and zooplankton were recorded, under 37 families and 46 genera. In addition to that, a total of 43 phytoplankton species were recorded under 25 families and 30 genera, (which includes; 15 species of Cyanophyceae, 17 species of Chlorophyceae, 08 species of Bacillariophyceae, 03 species of Euglenophyceae). and a total of 34 species of zooplankton were recorded under 12 families and 17 genera, (which includes 13 species of Rotifera, 09 species of Cladocera, 08 species of Copepoda and 04 species of Ostracoda). The maximum plankton diversity was observed during the monsoon season and the minimum in the summer season. Results from study revealed the ecological status of the lake is categorized as moderately polluted due to the presence of municipal waste and industrial discharges into the lake water. Therefore, the assessment of planktonic communities in water bodies will be useful to monitor and maintain the water quality parameters and wealth of aquatic biota in the aquatic ecosystem

    Anti-Inflammatory Mechanisms of Novel Synthetic Ruthenium Compounds

    No full text
    Inflammation is the primary biological reaction to induce severe infection or injury in the immune system. Control of different inflammatory cytokines, such as nitric oxide (NO), interleukins (IL), tumor necrosis factor alpha-(TNF-α), noncytokine mediator, prostaglandin E2 (PGE2), mitogen activated protein kinases (MAPKs) and nuclear factor kappa B (NF-κB), facilitates anti-inflammatory effect of different substances. Coordination metal complexes have been applied as metallo-drugs. Several metal complexes have found to possess potent biological activities, especially anticancer, cardioprotective, chondroprotective and anti-parasitosis activities. Among the metallo drugs, ruthenium-based (Ru) complexes have paid much attention in clinical applications. Despite the kinetic nature of Ru complexes is similar to platinum in terms of cell division events, their toxic effect is lower than that of cisplatin. This paper reviews the anti-inflammatory effect of novel synthetic Ru complexes with potential molecular mechanisms that are actively involved

    Impact of seasonal changes in zooplankton biodiversity in Ukkadam Lake, Coimbatore, Tamil Nadu, India, and potential future implications of climate change

    No full text
    Abstract Background Zooplankton biodiversity serves as an ecological indicator of aquatic environment due to their rapid response according to environmental changes. At the present study, impact of seasonal changes on zooplankton biodiversity was conducted in the Ukkadam Lake (Lat 10° 59′ N and Long 76° 57′ E), at Coimbatore city, Tamil Nadu, India. Results The biodiversity of zooplankton taxa were studied for a period from December 2011 to November 2012 on seasonal basis. During this time period, in total, 28 species of zooplankton were noticed, which includes 9 species of each Rotifera and Cladocera and 5 species of Copepoda and Ostracoda. In this present observation, total abundance of Rotifera was found to be predominant with 35%, followed by Cladocera 29%, Copepoda 29% and Ostracoda 7%. The population density of various group of zooplankton was observed, and it was found to be following order Rotifera > Copepoda > Cladocera > Ostracoda. The high and low population densities were recorded in summer and early monsoon season respectively. This higher zooplankton population density in summer might be due to the temperature acceleration in the Ukkadam Lake. Conclusions The present study revealed that zooplankton productivity was found to be higher in the Ukkadam Lake when the temperature was increased in summer season. It indicates that the temperature has influence on the zooplankton diversity. Therefore, increased temperature due to global climate change might have influence on the zooplankton production. Assessment of zooplankton biodiversity will be useful to monitor the health (water quality) and wealth (fishery productivity) of this lake system in the near future

    Involvement of Antioxidant Defenses and NF-κB/ERK Signaling in Anti-Inflammatory Effects of Pterostilbene, a Natural Analogue of Resveratrol

    No full text
    Pterostilbene (PTE), a natural stilbenoid occurring in grapes and berries, is recognized as a dimethylated analogue of resveratrol. This compound shows numerous notable pharmacological activities, including antiaging, anticancer, antidiabetes, antioxidant, and neuroprotection. This study investigates the anti-inflammatory properties of PTE in macrophage cells (RAW 264.7) against the lipoteichoic acid (LTA) stimulation. The expression of inflammatory tumor necrosis factor (TNF-α), interleukin-1β (IL-1 β), and inducible nitric oxide synthase (iNOS) and the content of nitric oxide (NO) were detected in LTA-induced cells. In addition, a Western blot assay was used to detect mitogen-activated protein kinases: extracellular signal-regulated kinase (ERK)1/2, p38 MAPK, and c-Jun N-terminal kinase (JNK). The phosphorylation of IκB and p65 and translocation of nuclear factor kappa B (NF-κB) were assessed by Western blot and immuno-fluorescence staining. The results showed that PTE significantly attenuated NO production and TNF-α, IL-1 β, and iNOS expression in LTA stimulated cells. Among the activation of ERK, JNK, and p38 in cells treated with LTA, PTE at higher concentration had only inhibited ERK activation. However, PTE blocked IκB phosphorylation, phosphorylation and nuclear translocation of p65NF-κB. Fascinatingly, PTE enhanced antioxidant defense molecules as verified by the enhanced heme oxygenase-1 (HO-1) expression, catalase (CAT) antioxidant enzyme, and non-enzymatic antioxidant, and reduced glutathione (GSH) in LTA-induced RAW 264.7 cells. These results suggest that PTE exerts an anti-inflammatory property via attenuating NF-κB/ERK signaling pathways as well as enriching antioxidant defense mechanisms

    Comparison of the Potency of Pterostilbene with NF-κB Inhibitors in Platelet Activation: Mutual Activation by Akt-NF-κB Signaling in Human Platelets

    No full text
    Myocardial infarction and cerebral ischemic stroke are prominent causes of death worldwide. Platelets play major roles in these diseases, although they are anucleated cells, but also express the NF-κB. Pterostilbene (PTE) possesses some intriguing pharmacological properties, including the capacity to inhibit platelet activation. We investigated the inhibitory role of PTE in NF-κB-mediated signal events and compared the relative potency with that of classical NF-κB inhibitors. PTE and IκB kinase (IKK) inhibitor, BAY11-7082, and proteasome inhibitor, Ro106-9920, inhibited platelet aggregation; the activity of BAY11-7082 and PTE were similar, but Ro106-9920 was weak in this reaction. PTE and BAY11-7082 diminished NF-κB signaling molecules, including IKK, IκBα, and p65 phosphorylation, and reversed IκBα degradation. However, Ro106-9920 was only effective in diminishing p65 phosphorylation and reversing IκBα degradation. In investigating the role of Akt and NF-κB in cell signaling events, MK-2206 (an inhibitor of Akt) markedly abolished IKK and p65 phosphorylation; BAY11-7082 also reduced Akt phosphorylation. PTE exhibited more potent activity in vivo than did BAY11-7082 in acute pulmonary thromboembolism. In conclusion, we identified a distinctive activation pathway of NF-κB and Akt involved in PTE-mediated antiplatelet aggregation, and PTE demonstrated powerful activity as a prophylactic and as clinical therapy for cardiovascular diseases

    The Antithrombotic Agent Pterostilbene Interferes with Integrin αIIbβ3-Mediated Inside-Out and Outside-In Signals in Human Platelets

    No full text
    Platelets play a crucial role in the physiology of primary hemostasis and pathological processes such as arterial thrombosis; thus, developing a therapeutic target that prevents platelet activation can reduce arterial thrombosis. Pterostilbene (PTE) has remarkable pharmacological activities, including anticancer and neuroprotection. Few studies have reported the effects of pterostilbene on platelet activation. Thus, we examined the inhibitory mechanisms of pterostilbene in human platelets and its role in vascular thrombosis prevention in mice. At low concentrations (2–8 μM), pterostilbene strongly inhibited collagen-induced platelet aggregation. Furthermore, pterostilbene markedly diminished Lyn, Fyn, and Syk phosphorylation and hydroxyl radical formation stimulated by collagen. Moreover, PTE directly hindered integrin αIIbβ3 activation through interfering with PAC-1 binding stimulated by collagen. In addition, pterostilbene affected integrin αIIbβ3-mediated outside-in signaling, such as integrin β3, Src, and FAK phosphorylation, and reduced the number of adherent platelets and the single platelet spreading area on immobilized fibrinogen as well as thrombin-stimulated fibrin clot retraction. Furthermore, pterostilbene substantially prolonged the occlusion time of thrombotic platelet plug formation in mice. This study demonstrated that pterostilbene exhibits a strong activity against platelet activation through the inhibition of integrin αIIbβ3-mediated inside-out and outside-in signaling, suggesting that pterostilbene can serve as a therapeutic agent for thromboembolic disorders

    Activation of Nrf2 by Esculetin Mitigates Inflammatory Responses through Suppression of NF-κB Signaling Cascade in RAW 264.7 Cells

    No full text
    Inflammation is a major root of several diseases such as allergy, cancer, Alzheimer’s, and several others, and the present state of existing drugs provoked researchers to search for new treatment strategies. Plants are regarded to be unique sources of active compounds holding pharmacological properties, and they offer novel designs in the development of therapeutic agents. Therefore, this study aimed to explore the anti-inflammatory mechanism of esculetin in lipoteichoic acid (LTA)-induced macrophage cells (RAW 264.7). The relative expression of inducible nitric oxide synthase (iNOS), nitric oxide (NO) production and COX-2 expression were intensified in LTA-induced RAW cells. The phosphorylation status of mitogen-activated protein kinases (extracellular signal-regulated kinase (ERK)1/2, p38 MAPK, and c-Jun N-terminal kinase (JNK)) and nuclear factor kappa B (NF-κB) p65 were detected by using Western blot assay. The nuclear translocation of p65 was assessed by confocal microscopic image analysis. Esculetin significantly and concentration-dependently inhibited LTA-induced NO production and iNOS expression, but not COX-2 expression, in RAW cells. Esculetin was not effective in LTA-induced MAPK molecules (ERK, p38 and JNK). However, esculetin recovered LTA-induced IκBα degradation and NF-κB p65 phosphorylation. Moreover, esculetin at a higher concentration of 20 µM evidently inhibited the nuclear translocation of NF-κB p65. At the same high concentration, esculetin augmented Nrf2 expression and decreased DPPH radical generation in RAW 264.7 cells. This study exhibits the value of esculetin for the treatment of LTA-induced inflammation by targeting NF-κB signaling pathways via its antioxidant properties

    Decreased Human Platelet Activation and Mouse Pulmonary Thrombosis by Rutaecarpine and Comparison of the Relative Effectiveness with BAY11-7082: Crucial Signals of p38-NF-κB

    No full text
    Platelets play a critical role in arterial thrombosis. Rutaecarpine (RUT) was purified from Tetradium ruticarpum, a well-known Chinese medicine. This study examined the relative activity of RUT with NF-κB inhibitors in human platelets. BAY11-7082 (an inhibitor of IκB kinase [IKK]), Ro106-9920 (an inhibitor of proteasomes), and RUT concentration-dependently (1–6 μM) inhibited platelet aggregation and P-selectin expression. RUT was found to have a similar effect to that of BAY11-7082; however, it exhibits more effectiveness than Ro106-9920. RUT suppresses the NF-κB pathway as it inhibits IKK, IκBα, and p65 phosphorylation and reverses IκBα degradation in activated platelets. This study also investigated the role of p38 and NF-κB in cell signaling events and found that SB203580 (an inhibitor of p38) markedly reduced p38, IKK, and p65 phosphorylation and reversed IκBα degradation as well as p65 activation in a confocal microscope, whereas BAY11-7082 had no effects in p38 phosphorylation. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay shows that RUT and BAY11-7082 did not exhibit free radical scavenging activity. In the in vivo study, compared with BAY11-7082, RUT more effectively reduced mortality in adenosine diphosphate (ADP)-induced acute pulmonary thromboembolism without affecting the bleeding time. In conclusion, a distinctive pathway of p38-mediated NF-κB activation may involve RUT-mediated antiplatelet activation, and RUT could act as a strong prophylactic or therapeutic drug for cardiovascular diseases

    Rutaecarpine, an Alkaloid from Evodia rutaecarpa, Can Prevent Platelet Activation in Humans and Reduce Microvascular Thrombosis in Mice: Crucial Role of the PI3K/Akt/GSK3β  Signal Axis through a Cyclic Nucleotides/VASP—Independent Mechanism

    No full text
    The role of activated platelets in acute and chronic cardiovascular diseases (CVDs) is well established. Therefore, antiplatelet drugs significantly reduce the risk of severe CVDs. Evodia rutaecarpa (Wu-Chu-Yu) is a well-known Chinese medicine, and rutaecarpine (Rut) is a main bioactive component with substantial beneficial properties including vasodilation. To address a research gap, we investigated the inhibitory mechanisms of Rut in washed human platelets and experimental mice. At low concentrations (1–5 μM), Rut strongly inhibited collagen-induced platelet aggregation, whereas it exerted only a slight or no effect on platelets stimulated with other agonists (e.g., thrombin). Rut markedly inhibited P-selectin expression; adenosine triphosphate release; [Ca2+]i mobilization; hydroxyl radical formation; and phospholipase C (PLC)γ2/protein kinase C (PKC), mitogen-activated protein kinase, and phosphoinositide 3-kinase (PI3K)/Akt/glycogen synthase kinase-3β (GSK3β) phosphorylation stimulated by collagen. SQ22536 (an adenylate cyclase inhibitor) or ODQ (a guanylate cyclase inhibitor) did not reverse Rut-mediated antiplatelet aggregation. Rut was not directly responding to vasodilator-stimulated phosphoprotein phosphorylation. Rut significantly increased the occlusion time of fluorescence irradiated thrombotic platelet plug formation. The findings demonstrated that Rut exerts a strong effect against platelet activation through the PLCγ2/PKC and PI3K/Akt/GSK3β pathways. Thus, Rut can be a potential therapeutic agent for thromboembolic disorders
    corecore