2 research outputs found

    Dynamic S-BOX using Chaotic Map for VPN Data Security

    Full text link
    A dynamic SBox using a chaotic map is a cryptography technique that changes the SBox during encryption based on iterations of a chaotic map, adding an extra layer of confusion and security to symmetric encryption algorithms like AES. The chaotic map introduces unpredictability, non-linearity, and key dependency, enhancing the overall security of the encryption process. The existing work on dynamic SBox using chaotic maps lacks standardized guidelines and extensive security analysis, leaving potential vulnerabilities and performance concerns unaddressed. Key management and the sensitivity of chaotic maps to initial conditions are challenges that need careful consideration. The main objective of using a dynamic SBox with a chaotic map in cryptography systems is to enhance the security and robustness of symmetric encryption algorithms. The method of dynamic SBox using a chaotic map involves initializing the SBox, selecting a chaotic map, iterating the map to generate chaotic values, and updating the SBox based on these values during the encryption process to enhance security and resist cryptanalytic attacks. This article proposes a novel chaotic map that can be utilized to create a fresh, lively SBox. The performance assessment of the suggested S resilience Box against various attacks involves metrics such as nonlinearity (NL), strict avalanche criterion (SAC), bit independence criterion (BIC), linear approximation probability (LP), and differential approximation probability (DP). These metrics help gauge the Box ability to handle and respond to different attack scenarios. Assess the cryptography strength of the proposed S-Box for usage in practical security applications, it is compared to other recently developed SBoxes. The comparative research shows that the suggested SBox has the potential to be an important advancement in the field of data security.Comment: 11 Page

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed
    corecore