4,810 research outputs found

    CP Violation and Flavour Mixings in Orbifold GUTs

    Full text link
    We address the flavour problem by incorporating the hypothesis of universal strength of Yukawa couplings in the framework of a 5D GUT model compactified on an S1/(Z2×Z2)S^1/(Z_2 \times Z_2^{\prime}) orbifold. We show that a quantitatively successful picture of fermion masses and mixings emerges from the interplay between the bulk suppression factors of geometric origin and the phases of the Yukawa matrices. We give an explicit example, where we obtain a good fit for both the CKM and PMNS matrices.Comment: 8 pages, no figures; v2: minor changes, published in Phys Rev D (Rapid Communication

    The holographic fluid dual to vacuum Einstein gravity

    Get PDF
    We present an algorithm for systematically reconstructing a solution of the (d+2)-dimensional vacuum Einstein equations from a (d+1)-dimensional fluid, extending the non-relativistic hydrodynamic expansion of Bredberg et al in arXiv:1101.2451 to arbitrary order. The fluid satisfies equations of motion which are the incompressible Navier-Stokes equations, corrected by specific higher derivative terms. The uniqueness and regularity of this solution is established to all orders and explicit results are given for the bulk metric and the stress tensor of the dual fluid through fifth order in the hydrodynamic expansion. We establish the validity of a relativistic hydrodynamic description for the dual fluid, which has the unusual property of having a vanishing equilibrium energy density. The gravitational results are used to identify transport coefficients of the dual fluid, which also obeys an interesting and exact constraint on its stress tensor. We propose novel Lagrangian models which realise key properties of the holographic fluid.Comment: 31 pages; v2: references added and minor improvements, published versio

    Effect of Fibonacci Modulation On Superconductivity

    Full text link
    We have studied finite-sized single band models with short range pairing interactions between electrons in presence of diagonal Fibonacci modulation in one dimension. Two models, namely the attractive Hubbard model and the Penson-Kolb model, have been investigated at half-filling at zero temperature by solving the Bogoliubov-de Gennes equations in real space within a mean field approximation. The competition between ``disorder'' and the pairing interaction leads to a suppression of superconductivity (of usual pairs with zero centre-of-mass momenta) in the strong-coupling limit while an enhancement of the pairing correlation is observed in the weak-coupling regime for both the models. However, the dissimilarity of the pairing mechanisms in these two models brings about notable difference in the results. The extent to which the bond ordered wave and the η\eta-paired (of pairs with centre-of-mass momenta = π\pi) phases of the Penson-Kolb model are affected by the disorder has also been studied in the present calculation. Some finite size effects are also identified.Comment: 14 pages, 13 figure

    Conductivity crossover in nano-crystalline diamond films: Realization of a disordered superlattice-like structure

    Full text link
    We present the electrical transport characteristics of a batch of nano-crystalline diamond films of varying nitrogen concentrations and explain the conduction mechanism by the disordered quasi-superlattice model applied to semiconductor heterostructures. Synthesized by the hot filament chemical vapour deposition technique, the degree of structural disorder in the films, confirmed from Raman spectroscopy, is found to be controllable, resulting in the transition of conduction mechanism from localized and activated to the metallic conduction regime. Hence through high field magneto-resistance measurements at low temperatures we firmly establish a conductivity crossover from hopping to 3D weak localization. The long electronic dephasing time and its weak temperature dependence suggest the possibility for diamond-based high-speed device applications

    Local and global statistical distances are equivalent on pure states

    Full text link
    The statistical distance between pure quantum states is obtained by finding a measurement that is optimal in a sense defined by Wootters. As such, one may expect that the statistical distance will turn out to be different if the set of possible measurements is restricted in some way. It nonetheless turns out that if the restriction is to local operations and classical communication (LOCC) on any multipartite system, then the statistical distance is the same as it is without restriction, being equal to the angle between the states in Hilbert space.Comment: 5 pages, comments welcom

    Classical no-cloning theorem under Liouville dynamics by non-Csisz\'ar f-divergence

    Full text link
    The Csisz\'ar f-divergence, which is a class of information distances, is known to offer a useful tool for analysing the classical counterpart of the cloning operations that are quantum mechanically impossible for the factorized and marginality classical probability distributions under Liouville dynamics. We show that a class of information distances that does not belong to this divergence class also allows for the formulation of a classical analogue of the quantum no-cloning theorem. We address a family of nonlinear Liouville-like equations, and generic distances, to obtain constraints on the corresponding functional forms, associated with the formulation of classical analogue of the no-cloning principle.Comment: 6 pages, revised, published versio

    Upper bounds on all R-parity-violating \lambda\lambda'' combinations from proton stability

    Full text link
    In an R-parity-violating supersymmetric theory, we derive upper bounds on all the \lambda''_{ijk}\lambda_{i'j'k'}-type combinations from the consideration of proton stability, where \lambda''_{ijk} are baryon-number-violating couplings involving three baryonic fields and \lambda_{i'j'k'} are lepton-number-violating couplings involving three leptonic fields.Comment: 5 pages, Latex, uses axodraw.sty; minor changes in the text. Final versio

    Weak Field Black Hole Formation in Asymptotically AdS Spacetimes

    Full text link
    We use the AdS/CFT correspondence to study the thermalization of a strongly coupled conformal field theory that is forced out of its vacuum by a source that couples to a marginal operator. The source is taken to be of small amplitude and finite duration, but is otherwise an arbitrary function of time. When the field theory lives on Rd1,1R^{d-1,1}, the source sets up a translationally invariant wave in the dual gravitational description. This wave propagates radially inwards in AdSd+1AdS_{d+1} space and collapses to form a black brane. Outside its horizon the bulk spacetime for this collapse process may systematically be constructed in an expansion in the amplitude of the source function, and takes the Vaidya form at leading order in the source amplitude. This solution is dual to a remarkably rapid and intriguingly scale dependent thermalization process in the field theory. When the field theory lives on a sphere the resultant wave either slowly scatters into a thermal gas (dual to a glueball type phase in the boundary theory) or rapidly collapses into a black hole (dual to a plasma type phase in the field theory) depending on the time scale and amplitude of the source function. The transition between these two behaviors is sharp and can be tuned to the Choptuik scaling solution in Rd,1R^{d,1}.Comment: 50 pages + appendices, 6 figures, v2: Minor revisions, references adde
    corecore