6,569 research outputs found

    Radiative neutrino decay and CP-violation in R-parity violating supersymmetry

    Get PDF
    We calculate the radiative decay amplitude for Majorana neutrinos in trilinear R-parity violating supersymmetric framework. Our results make no assumption regarding the masses and mixings of fermions and sfermions. The results obtained are exemplary for generic models with loop-generated neutrino masses. Comparison of this amplitude with the neutrino mass matrix shows that the two provide independent probes of CP-violating phases.Comment: Latex, uses axodraw, 14 pages (small changes implemented

    Upper bounds on all R-parity-violating \lambda\lambda'' combinations from proton stability

    Full text link
    In an R-parity-violating supersymmetric theory, we derive upper bounds on all the \lambda''_{ijk}\lambda_{i'j'k'}-type combinations from the consideration of proton stability, where \lambda''_{ijk} are baryon-number-violating couplings involving three baryonic fields and \lambda_{i'j'k'} are lepton-number-violating couplings involving three leptonic fields.Comment: 5 pages, Latex, uses axodraw.sty; minor changes in the text. Final versio

    Ground states and excited states of hypernuclei in Relativistic Mean Field approach

    Full text link
    Hypernuclei have been studied within the framework of Relativistic Mean Field theory. The force FSU Gold has been extended to include hyperons. The effective hyperon-nucleon and nucleon-nucleon interactions have been obtained by fitting experimental energies in a number of hypernuclei over a wide range of mass. Calculations successfully describe various features including hyperon separation energy and single particle spectra of single-\Lambda hypernuclei throughout the periodic table. We also extend this formalism to double-\Lambda hypernuclei.Comment: 16 pages,3 figure

    Constraining R-parity violating couplings from B --> PP decays using QCD improved factorization method

    Get PDF
    We investigate the role of R-parity violating interaction in the non-leptonic decays of B mesons into two light mesons B --> PP. The decay amplitudes are calculated using the QCD improved factorization method. Using the combined data on B decays from BaBar, Belle and CLEO, we obtain strong constraints on the various products of R-parity violating couplings. Many of these new constraints are stronger than the existing bounds.Comment: 19 pages including two eps figure

    Constraints on R-parity violating supersymmetry from neutral meson mixing

    Full text link
    Upper bounds at the weak scale are put on all λijkλimn\lambda'_{ijk}\lambda'_{imn} type products of R-parity violating supersymmetry that may affect K-Kbar and B-Bbar mixing. We constrain all possible products, including some not considered before, using next-to-leading order QCD corrections to the mixing amplitudes. Constraints are obtained for both real and imaginary parts of the couplings. We also discuss briefly some correlated decay channels which should be investigated in future experiments.Comment: 13 pages, 2 figures, uses revtex. Constraints updated, and new constraints adde

    A Non-supersymmetric Interpretation of the CDF e+e-\gamma\gamma + missing E_T Event

    Full text link
    The \eegg event reported recently by the CDF Collaboration has been interpreted as a signal of supersymmetry in several recent papers. In this article, we report on an alternative non-supersymmetric interpretation of the event using an extension of the standard model which contains new physics at the electroweak scale that does not effect the existing precision electroweak data. We extend the standard model by including an extra sequential generation of fermions, heavy right-handed neutrinos for all generations and an extra singly charged SU(2)-singlet Higgs boson. We discuss possible ways to discriminate this from the standard supersymemtric interpretations.Comment: 7 pages, Latex, no figure

    Gravitational quasinormal modes of AdS black branes in d spacetime dimensions

    Full text link
    The AdS/CFT duality has established a mapping between quantities in the bulk AdS black-hole physics and observables in a boundary finite-temperature field theory. Such a relationship appears to be valid for an arbitrary number of spacetime dimensions, extrapolating the original formulations of Maldacena's correspondence. In the same sense properties like the hydrodynamic behavior of AdS black-hole fluctuations have been proved to be universal. We investigate in this work the complete quasinormal spectra of gravitational perturbations of dd-dimensional plane-symmetric AdS black holes (black branes). Holographically the frequencies of the quasinormal modes correspond to the poles of two-point correlation functions of the field-theory stress-energy tensor. The important issue of the correct boundary condition to be imposed on the gauge-invariant perturbation fields at the AdS boundary is studied and elucidated in a fully dd-dimensional context. We obtain the dispersion relations of the first few modes in the low-, intermediate- and high-wavenumber regimes. The sound-wave (shear-mode) behavior of scalar (vector)-type low-frequency quasinormal mode is analytically and numerically confirmed. These results are found employing both a power series method and a direct numerical integration scheme.Comment: added references, typos corrected, minor changes, final version for JHE

    The Energy Loss of a Heavy Quark Moving in a Viscous Fluid

    Full text link
    To study the rate of energy and momentum loss of a heavy quark in QGP, specifically in the hydrodynamic regime, we use fluid/gravity duality and construct a perturbative procedure to find the string solution in gravity side. We show that by this construction the drag force exerted on the quark can be computed perturbatively, order by order in a boundary derivative expansion. At ideal order, our result is just the drag force exerted on a moving quark in thermal plasma with thermodynamics variables promoted to become local functions of space and time. Furthermore, we apply this procedure to a transverse quark in Bjorken flow and compute the first-derivative corrections, namely the viscous corrections, to the drag force.Comment: 33 pages, 6 figures, references added v5: Some correction

    Weak Field Black Hole Formation in Asymptotically AdS Spacetimes

    Full text link
    We use the AdS/CFT correspondence to study the thermalization of a strongly coupled conformal field theory that is forced out of its vacuum by a source that couples to a marginal operator. The source is taken to be of small amplitude and finite duration, but is otherwise an arbitrary function of time. When the field theory lives on Rd1,1R^{d-1,1}, the source sets up a translationally invariant wave in the dual gravitational description. This wave propagates radially inwards in AdSd+1AdS_{d+1} space and collapses to form a black brane. Outside its horizon the bulk spacetime for this collapse process may systematically be constructed in an expansion in the amplitude of the source function, and takes the Vaidya form at leading order in the source amplitude. This solution is dual to a remarkably rapid and intriguingly scale dependent thermalization process in the field theory. When the field theory lives on a sphere the resultant wave either slowly scatters into a thermal gas (dual to a glueball type phase in the boundary theory) or rapidly collapses into a black hole (dual to a plasma type phase in the field theory) depending on the time scale and amplitude of the source function. The transition between these two behaviors is sharp and can be tuned to the Choptuik scaling solution in Rd,1R^{d,1}.Comment: 50 pages + appendices, 6 figures, v2: Minor revisions, references adde
    corecore