795 research outputs found

    A new window on Strange Quark Matter as the ground state of strongly interacting matter

    Full text link
    If strange quark matter is the true ground state of matter, it must have lower energy than nuclear matter. Simultaneously, two-flavour quark matter must have higher energy than nuclear matter, for otherwise the latter would convert to the former. We show, using an effective chiral lagrangian, that the existence of a new lower energy ground state for two-flavour quark matter, the pion condensate, shrinks the window for strange quark matter to be the ground state of matter and sets new limits on the current strange quark mass

    Critical depinning force and vortex lattice order in disordered superconductors

    Full text link
    We simulate the ordering of vortices and its effects on the critical current in superconductors with varied vortex-vortex interaction strength and varied pinning strengths for a two-dimensional system. For strong pinning the vortex lattice is always disordered and the critical depinning force only weakly increases with decreasing vortex-vortex interactions. For weak pinning the vortex lattice is defect free until the vortex-vortex interactions have been reduced to a low value, when defects begin to appear with a simultaneous rapid increase in the critical depinning force. In each case the depinning force shows a maximum for non-interacting vortices. The relative height of the peak increases and the peak width decreases for decreasing pinning strength in excellent agreement with experimental trends associated with the peak effect. We show that scaling relations exist between the distance between defects in the vortex lattice and the critical depinning force.Comment: 5 pages, 6 figure

    V-I characteristics in the vicinity of order-disorder transition in vortex matter

    Full text link
    The shape of the V-I characteristics leading to a peak in the differential resistance r_d=dV/dI in the vicinity of the order-disorder transition in NbSe2 is investigated. r_d is large when measured by dc current. However, for a small Iac on a dc bias r_d decreases rapidly with frequency, even at a few Hz, and displays a large out-of-phase signal. In contrast, the ac response increases with frequency in the absence of dc bias. These surprisingly opposite phenomena and the peak in r_d are shown to result from a dynamic coexistence of two vortex matter phases rather than from the commonly assumed plastic depinning.Comment: 12 pages 4 figures. Accepted for publication in PRB rapi

    Transverse depinning in strongly driven vortex lattices with disorder

    Full text link
    Using numerical simulations we investigate the transverse depinning of moving vortex lattices interacting with random disorder. We observe a finite transverse depinning barrier for vortex lattices that are driven with high longitudinal drives, when the vortex lattice is defect free and moving in correlated 1D channels. The transverse barrier is reduced as the longitudinal drive is decreased and defects appear in the vortex lattice, and the barrier disappears in the plastic flow regime. At the transverse depinning transition, the vortex lattice moves in a staircase pattern with a clear transverse narrow-band voltage noise signature.Comment: 4 pages, 4 figure

    Dynamic ordering and frustration of confined vortex rows studied by mode-locking experiments

    Get PDF
    The flow properties of confined vortex matter driven through disordered mesoscopic channels are investigated by mode locking (ML) experiments. The observed ML effects allow to trace the evolution of both the structure and the number of confined rows and their match to the channel width as function of magnetic field. From a detailed analysis of the ML behavior for the case of 3-rows we obtain ({\it i}) the pinning frequency fpf_p, ({\it ii}) the onset frequency fcf_c for ML (\propto ordering velocity) and ({\it iii}) the fraction LML/LL_{ML}/L of coherently moving 3-row regions in the channel. The field dependence of these quantities shows that, at matching, where LMLL_{ML} is maximum, the pinning strength is small and the ordering velocity is low, while at mismatch, where LMLL_{ML} is small, both the pinning force and the ordering velocity are enhanced. Further, we find that fcfp2f_c \propto f_p^2, consistent with the dynamic ordering theory of Koshelev and Vinokur. The microscopic nature of the flow and the ordering phenomena will also be discussed.Comment: 10 pages, 7 figure, submitted to PRB. Discussion has been improved and a figure has been adde

    IceCube expectations for two high-energy neutrino production models at active galactic nuclei

    Full text link
    We have determined the currently allowed regions of the parameter spaces of two representative models of diffuse neutrino flux from active galactic nuclei (AGN): one by Koers & Tinyakov (KT) and another by Becker & Biermann (BB). Our observable has been the number of upgoing muon-neutrinos expected in the 86-string IceCube detector, after 5 years of exposure, in the range 10^5 < E/GeV < 10^8. We have used the latest estimated discovery potential of the IceCube-86 array at the 5-sigma level to determine the lower boundary of the regions, while for the upper boundary we have used either the AMANDA upper bound on the neutrino flux or the more recent preliminary upper bound given by the half-completed IceCube-40 array (IC40). We have varied the spectral index of the proposed power-law fluxes, alpha, and two parameters of the BB model: the ratio between the boost factors of neutrinos and cosmic rays, Gamma_nu/Gamma_{CR}, and the maximum redshift of the sources that contribute to the cosmic-ray flux, zCRmax. For the KT model, we have considered two scenarios: one in which the number density of AGN does not evolve with redshift and another in which it evolves strongly, following the star formation rate. Using the IC40 upper bound, we have found that the models are visible in IceCube-86 only inside very thin strips of parameter space and that both of them are discarded at the preferred value of alpha = 2.7 obtained from fits to cosmic-ray data. Lower values of alpha, notably the values 2.0 and 2.3 proposed in the literature, fare better. In addition, we have analysed the capacity of IceCube-86 to discriminate between the models within the small regions of parameter space where both of them give testable predictions. Within these regions, discrimination at the 5-sigma level or more is guaranteed.Comment: 24 pages, 6 figures, v2: new IceCube-40 astrophysical neutrino upper bound and IceCube-86 discovery potential used, explanation of AGN flux models improved, only upgoing neutrinos used, conclusions strengthened. Accepted for publication in JCA

    The STACEE-32 Ground Based Gamma-ray Detector

    Full text link
    We describe the design and performance of the Solar Tower Atmospheric Cherenkov Effect Experiment detector in its initial configuration (STACEE-32). STACEE is a new ground-based gamma ray detector using the atmospheric Cherenkov technique. In STACEE, the heliostats of a solar energy research array are used to collect and focus the Cherenkov photons produced in gamma-ray induced air showers. The large Cherenkov photon collection area of STACEE results in a gamma-ray energy threshold below that of previous detectors.Comment: 45 pages, 25 figures, Accepted for publication in Nuclear Instruments and Methods

    Dynamic Ordering and Transverse Depinning of a Driven Elastic String in a Disordered Media

    Full text link
    We examine the dynamics of an elastic string interacting with quenched disorder driven perpendicular and parallel to the string. We show that the string is the most disordered at the depinning transition but with increasing drive partial ordering is regained. For low drives the noise power is high and we observe a 1/f^2 noise signature crossing over to a white noise character with low power at higher drives. For the parallel driven moving string there is a finite transverse critical depinning force with the depinning transition occuring by the formation of running kinks.Comment: 4 pages, 4 postscript figure

    Multivariate discrete distributions via sums and shares

    Get PDF
    In this article, we develop a sum and share decomposition to model multivariate discrete distributions, and more specifically multivariate count data that can be divided into a number of distinct categories. From a Poisson mixture model for the sum and a multinomial mixture model for the shares, a rich ensemble of properties, examples and relationships arises. As a main example, a seemingly new multivariate model involving a negative binomial sum and Polya shares is considered, previously seen only in the bivariate case, for which we present two contrasting applications. For other choices of the distribution of the sum, natural but novel discrete multivariate Liouville distributions emerge; an important special case of these is that of Schur constant distributions. Analogies and interactions with related continuous distributions are to the fore throughout

    Dynamic Scaling in Diluted Systems Phase Transitions: Deactivation trough Thermal Dilution

    Full text link
    Activated scaling is confirmed to hold in transverse field induced phase transitions of randomly diluted Ising systems. Quantum Monte Carlo calculations have been made not just at the percolation threshold but well bellow and above it including the Griffiths-McCoy phase. A novel deactivation phenomena in the Griffiths-McCoy phase is observed using a thermal (in contrast to random) dilution of the system.Comment: 4 pages, 4 figures, RevTe
    corecore