24,461 research outputs found

    Improvement of PolSAR Decomposition Scattering Powers Using a Relative Decorrelation Measure

    Full text link
    In this letter, a methodology is proposed to improve the scattering powers obtained from model-based decomposition using Polarimetric Synthetic Aperture Radar (PolSAR) data. The novelty of this approach lies in utilizing the intrinsic information in the off-diagonal elements of the 3×\times3 coherency matrix T\mathbf{T} represented in the form of complex correlation coefficients. Two complex correlation coefficients are computed between co-polarization and cross-polarization components of the Pauli scattering vector. The difference between modulus of complex correlation coefficients corresponding to Topt\mathbf{T}^{\mathrm{opt}} (i.e. the degree of polarization (DOP) optimized coherency matrix), and T\mathbf{T} (original) matrices is obtained. Then a suitable scaling is performed using fractions \emph{i.e.,} (Tiiopt/i=13Tiiopt)(T_{ii}^{\mathrm{opt}}/\sum\limits_{i=1}^{3}T_{ii}^{\mathrm{opt}}) obtained from the diagonal elements of the Topt\mathbf{T}^{\mathrm{opt}} matrix. Thereafter, these new quantities are used in modifying the Yamaguchi 4-component scattering powers obtained from Topt\mathbf{T}^{\mathrm{opt}}. To corroborate the fact that these quantities have physical relevance, a quantitative analysis of these for the L-band AIRSAR San Francisco and the L-band Kyoto images is illustrated. Finally, the scattering powers obtained from the proposed methodology are compared with the corresponding powers obtained from the Yamaguchi \emph{et. al.,} 4-component (Y4O) decomposition and the Yamaguchi \emph{et. al.,} 4-component Rotated (Y4R) decomposition for the same data sets. The proportion of negative power pixels is also computed. The results show an improvement on all these attributes by using the proposed methodology.Comment: Accepted for publication in Remote Sensing Letter

    Multiple membrane cavity optomechanics

    Full text link
    We investigate theoretically the extension of cavity optomechanics to multiple membrane systems. We describe such a system in terms of the coupling of the collective normal modes of the membrane array to the light fields. We show these modes can be optically addressed individually and be cooled, trapped and characterized, e.g. via quantum nondemolition measurements. Analogies between this system and a linear chain of trapped ions or dipolar molecules imply the possibility of related applications in the quantum regime.Comment: 4 pages, 2 figure

    Trapping and Cooling a mirror to its quantum mechanical ground state

    Full text link
    We propose a technique aimed at cooling a harmonically oscillating mirror to its quantum mechanical ground state starting from room temperature. Our method, which involves the two-sided irradiation of the vibrating mirror inside an optical cavity, combines several advantages over the two-mirror arrangements being used currently. For comparable parameters the three-mirror configuration provides a stiffer trap for the oscillating mirror. Furthermore it prevents bistability from limiting the use of higher laser powers for mirror trapping, and also partially does so for mirror cooling. Lastly, it improves the isolation of the mirror from classical noise so that its dynamics are perturbed mostly by the vacuum fluctuations of the optical fields. These improvements are expected to bring the task of achieving ground state occupation for the mirror closer to completion.Comment: 5 pages, 1 figur

    Simple analysis of off-axis solenoid fields using the scalar magnetostatic potential: application to a Zeeman-slower for cold atoms

    Full text link
    In a region free of currents, magnetostatics can be described by the Laplace equation of a scalar magnetic potential, and one can apply the same methods commonly used in electrostatics. Here we show how to calculate the general vector field inside a real (finite) solenoid, using only the magnitude of the field along the symmetry axis. Our method does not require integration or knowledge of the current distribution, and is presented through practical examples, including a non-uniform finite solenoid used to produce cold atomic beams via laser cooling. These examples allow educators to discuss the non-trivial calculation of fields off-axis using concepts familiar to most students, while offering the opportunity to introduce important advancements of current modern research.Comment: 6 pages. Accepted in the American Journal of Physic

    In-vivo magnetic resonance imaging of hyperpolarized silicon particles

    Full text link
    Silicon-based micro and nanoparticles have gained popularity in a wide range of biomedical applications due to their biocompatibility and biodegradability in-vivo, as well as a flexible surface chemistry, which allows drug loading, functionalization and targeting. Here we report direct in-vivo imaging of hyperpolarized 29Si nuclei in silicon microparticles by MRI. Natural physical properties of silicon provide surface electronic states for dynamic nuclear polarization (DNP), extremely long depolarization times, insensitivity to the in-vivo environment or particle tumbling, and surfaces favorable for functionalization. Potential applications to gastrointestinal, intravascular, and tumor perfusion imaging at sub-picomolar concentrations are presented. These results demonstrate a new background-free imaging modality applicable to a range of inexpensive, readily available, and biocompatible Si particles.Comment: Supplemental Material include

    Classical dynamics of the optomechanical modes of a Bose-Einstein condensate in a ring cavity

    Full text link
    We consider a cavity optomechanical system consisting of a Bose-Einstein condensate (BEC) interacting with two counterpropagating traveling-wave modes in an optical ring cavity. In contrast to the more familiar case where the condensate is driven by the standing-wave field of a high-QQ Fabry-P{\'e}rot cavity we find that both symmetric and antisymmetric collective density side modes of the BEC are mechanically excited by the light field. In the semiclassical, mean-field limit where the light field and the zero-momentum mode of the condensate are treated classically the system is found to exhibit a rich multistable behavior, including the appearance of isolated branches of solutions (isolas). We also present examples of the dynamics of the system as input parameters such as the frequency of the driving lasers are varied

    Molecular Dynamics Simulation of Compressible Fluid Flow in Two-Dimensional Channels

    Full text link
    We study compressible fluid flow in narrow two-dimensional channels using a novel molecular dynamics simulation method. In the simulation area, an upstream source is maintained at constant density and temperature while a downstream reservoir is kept at vacuum. The channel is sufficiently long in the direction of the flow that the finite length has little effect on the properties of the fluid in the central region. The simulated system is represented by an efficient data structure, whose internal elements are created and manipulated dynamically in a layered fashion. Consequently the code is highly efficient and manifests completely linear performance in simulations of large systems. We obtain the steady-state velocity, temperature, and density distributions in the system. The velocity distribution across the channel is very nearly a quadratic function of the distance from the center of the channel and reveals velocity slip at the boundaries; the temperature distribution is only approximately a quartic function of this distance from the center to the channel. The density distribution across the channel is non-uniform. We attribute this non-uniformity to the relatively high Mach number, approximately 0.5, in the fluid flow. An equation for the density distribution based on simple compressibility arguments is proposed; its predictions agree well with the simulation results. Validity of the concept of local dynamic temperature and the variation of the temperature along the channel are discussed.Comment: 16 pages (in latex) + 8 figures (in a single ps file). Submitted to the Physical Review

    Comment on "Is the nonlinear Meissner effect unobservable?"

    Full text link
    In a recent Letter (Phys. Rev. Lett. 81, p.5640 (1998), cond-mat/9808249 v3), it was suggested that nonlocal effects may prevent observation of the nonlinear Meissner effect in YBCO. We argue that this claim is incorrect with regards to measurements of the nonlinear transverse magnetic moment, and that the most likely reason for a null result lies elsewhere.Comment: 1 pag
    corecore