19,547 research outputs found

    Strain induced band gap deformation of H/F passivated graphene and h-BN sheet

    Full text link
    Strain induced band gap deformations of hydrogenated/fluorinated graphene and hexagonal BN sheet have been investigated using first principles density functional calculations. Within harmonic approximation, the deformation is found to be higher for hydrogenated systems than for the fluorinated systems. Interestingly, our calculated band gap deformation for hydrogenated/fluorinated graphene and BN sheets are positive, while those for pristine graphene and BN sheet are found to be negative. This is due to the strong overlap between nearest neighbor {\pi} orbitals in the pristine sheets, that is absent in the passivated systems. We also estimate the intrinsic strength of these materials under harmonic uniaxial strain, and find that the in-plane stiffness of fluorinated and hydrogenated graphene are close, but larger in magnitude as compared to those of fluorinated and hydrogenated BN sheet.Comment: Submitted to PR

    Spectral weight redistribution in (LaNiO3)n/(LaMnO3)2 superlattices from optical spectroscopy

    Full text link
    We have studied the optical properties of four (LaNiO3_3)n_n/(LaMnO3_3)2_2 superlattices (SL) (nn=2, 3, 4, 5) on SrTiO3_3 substrates. We have measured the reflectivity at temperatures from 20 K to 400 K, and extracted the optical conductivity through a fitting procedure based on a Kramers-Kronig consistent Lorentz-Drude model. With increasing LaNiO3_3 thickness, the SLs undergo an insulator-to-metal transition (IMT) that is accompanied by the transfer of spectral weight from high to low frequency. The presence of a broad mid-infrared band, however, shows that the optical conductivity of the (LaNiO3_3)n_n/(LaMnO3_3)2_2 SLs is not a linear combination of the LaMnO3_3 and LaNiO3_3 conductivities. Our observations suggest that interfacial charge transfer leads to an IMT due to a change in valence at the Mn and Ni sites.Comment: Accepted for publication in Phys. Rev. Lett. 5 pages, 5 figure

    On Some properties of Di-hadronic states

    Full text link
    The binding energies of di- hadronic states have been calculated assuming a 'molecular' interaction provided by the asymptotic expression of the residual confined gluon exchange potential between the component hadrons in the system. Meson- meson and meson- baryon states have been studied in detail and a mass formula has been used to calculate total mass of the 'molecules'.Comment: 11 page

    Universal Scaling Property of System Approaching Equilibrium

    Full text link
    In this Letter we show that the diffusion kinetics of kinetic energy among the atoms in non- equilibrium crystalline systems follows universal scaling relation and obey Levy-walk properties. This scaling relation is found to be valid for systems no matter how far they are driven out of equilibrium.Comment: 6 pages, 4 figure

    Entanglement of a Laguerre-Gaussian cavity mode with a rotating mirror

    Full text link
    It has previously been shown theoretically that the exchange of linear momentum between the light field in an optical cavity and a vibrating end mirror can entangle the electromagnetic field with the vibrational motion of that mirror. In this paper we consider the rotational analog of this situation and show that radiation torque can similarly entangle a Laguerre-Gaussian cavity mode with a rotating end mirror. We examine the mirror-field entanglement as a function of ambient temperature, radiation detuning and orbital angular momentum carried by the cavity mode.Comment: 5 figures, 1 table, submitted to Phys.Rev.
    corecore