36 research outputs found
Numerical Studies on Time Resolution of Micro-Pattern Gaseous Detectors
The Micro-Pattern Gaseous Detectors offer excellent spatial and temporal
resolution in harsh radiation environments of high-luminosity colliders. In
this work, an attempt has been made to establish an algorithm for estimating
the time resolution of different MPGDs. It has been estimated numerically on
the basis of two aspects, statistics and distribution of primary electrons and
their diffusion in gas medium, while ignoring their multiplication. The effect
of detector design parameters, field configuration and the composition of gas
mixture on the resolution have also been investigated. Finally, a modification
in the numerical approach considering the threshold limit of detecting the
signal has been done and tested for the RPC detector for its future
implementation in case of MPGDs
Performance Studies of Bulk Micromegas of Different Design Parameters
The present work involves the comparison of various bulk Micromegas detectors
having different design parameters. Six detectors with amplification gaps of
and mesh hole pitch of were tested at room temperature and normal gas pressure. Two
setups were built to evaluate the effect of the variation of the amplification
gap and mesh hole pitch on different detector characteristics. The gain, energy
resolution and electron transmission of these Micromegas detectors were
measured in Argon-Isobutane (90:10) gas mixture while the measurements of the
ion backflow were carried out in P10 gas. These measured characteristics have
been compared in detail to the numerical simulations using the Garfield
framework that combines packages such as neBEM, Magboltz and Heed.Comment: arXiv admin note: text overlap with arXiv:1605.0289
Experimental and numerical simulation of a TPC like set up for the measurement of ion backflow
Ion backflow is one of the effects limiting the operation of a gaseous
detector at high flux, by giving rise to space charge which perturbs the
electric field. The natural ability of bulk Micromegas to suppress ion feedback
is very effective and can help the TPC drift volume to remain relatively free
of space charge build-up. An efficient and precise measurement of the backflow
fraction is necessary to cope up with the track distortion due to the space
charge effect. In a subtle but significant modification of the usual approach,
we have made use of two drift meshes in order to measure the ion backflow
fraction for bulk Micromegas detector. This helps to truly represent the
backflow fraction for a TPC. Moreover, attempt is taken to optimize the field
configuration between the drift meshes. In conjunction with the experimental
measurement, Garfield simulation framework has been used to simulate the
related physics processes numerically
Probing deviation of tribimaximal mixing and reach of using neutrino factory at CERN and ICAL detector at INO
We investigate the deviation from tribimaximal mixing value and the reach of
using neutrino factory at CERN and ICAL detector at INO.Comment: 5 pages LaTeX, 3 eps figures. Talk given by Debasish Majumdar at
NUFACT07 at Okayam
A GEANT-based study of atmospheric neutrino oscillation parameters at INO
We have studied the dependence of the allowed space of the atmospheric
neutrino oscillation parameters on the time of exposure for a magnetized Iron
CALorimeter (ICAL) detector at the India-based Neutrino Observatory (INO). We
have performed a Monte Carlo simulation for a 50 kTon ICAL detector generating
events by the neutrino generator NUANCE and simulating the detector response by
GEANT. A chi-square analysis for the ratio of the up-going and down-going
neutrinos as a function of is performed and the allowed regions at 90%
and 99% CL are displayed. These results are found to be better than the current
experimental results of MINOS and Super-K. The possibilities of further
improvement have also been discussed.Comment: 8 pages, 13 figures, a new figure added, version accepted in IJMP
Onset of deformation at in Bi nuclei
The high spin states in Bi has been studied by -ray
spectroscopic method using the Ta(Ne, 6n) fusion evaporation
reaction at 130 MeV. The coincidence data were taken using an
array of 8 clover HPGe detectors. The spin and parity assignments of the
excited states have been made from the measured directional correlation from
oriented states (DCO) ratios and integrated polarization asymmetry (IPDCO)
ratios. The results show, for the first time, the evidence of a rotational like
band based on a 13/2 band head in this nucleus, indicating the onset of
deformation at neutron number for the Bismuth isotopes. The results
obtained were found to be consistent with the prediction of the total Routhian
surface calculations using Woods Saxon potential. The same calculations also
predict a change in shape from oblate to triaxial in Bi at high
rotational frequency