7,409 research outputs found
Beurling algebra analogues of the classical theorems of Wiener and Levy on absolutely convergent Fourier series
Let be a continuous function on the unit circle , whose Fourier
series is -absolutely convergent for some weight on the set of
integers . If is nowhere vanishing on , then there
exists a weight on such that had -absolutely
convergent Fourier series. This includes Wiener's classical theorem. As a
corollary, it follows that if is holomorphic on a neighbourhood of the
range of , then there exists a weight on such that
\hbox{} has -absolutely convergent Fourier series. This is a
weighted analogue of L\'{e}vy's generalization of Wiener's theorem. In the
theorems, and are non-constant if and only if is
non-constant. In general, the results fail if or is required to be
the same weight .Comment: 4 page
Porous silicon & titanium dioxide coatings prepared by atmospheric pressure plasma jet chemical vapour deposition technique-a novel coating technology for photovoltaic modules
Atmospheric Pressure Plasma Jet (APPJ) is an alternative for wet processes used to make anti reflection coatings and smooth substrate surface for the PV module. It is also an attractive technique because of it’s high growth rate, low power consumption, lower cost and absence of high cost vacuum systems. This work deals with the deposition of silicon oxide from hexamethyldisiloxane (HMDSO) thin films and titanium dioxide from tetraisopropyl ortho titanate using an atmospheric pressure plasma jet (APPJ) system in open air conditions. A sinusoidal high voltage with a frequency between 19-23 kHz at power up to 1000 W was applied between two tubular electrodes separated by a dielectric material. The jet, characterized by Tg ~ 600-800 K, was mostly laminar (Re ~ 1200) at the nozzle exit and became partially turbulent along the jet axis (Re ~ 3300). The spatially resolved emission spectra showed OH, N2, N2+ and CN molecular bands and O, H, N, Cu and Cr lines as well as the NO2 chemiluminescence continuum (450-800 nm). Thin films with good uniformity on the substrate were obtained at high deposition rate, between 800 -1000 nm.s-1, and AFM results revealed that coatings are relatively smooth (Ra ~ 2 nm). The FTIR and SEM analyses were better used to monitor the chemical composition and the morphology of the films in function of the different experimental conditions.
When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/2790
Laparoscopic cholecystectomy at the Aga Khan Hospital, Nairobi
Objective: To evaluate our experience of laparoscopic cholecystectomies at the Aga Khan Hospital, Nairobi over a three-year period from the inception of the technique, and to assess its value and advantages to the patients.
Design: A prospective case series study.
Setting: The Aga Khan Hospital, Nairobi.
Patients: One hundred and thirty five cases operated from February 1996 to April 1999. All patients were subjected to the American method of laparoscopic cholecystectomy, which is described in detail in this paper.
Main outcome measures: Clinical presentation, age and sex demographics, average hospital stay, intraoperative and postoperative complications and outcome.
Results: There was a female preponderance with a female to male ratio of 5:1. Mean age was forty nine years. Majority of patients suffered from chronic cholecystitis. The conversion rate to an open procedure was five per cent. There were two cases of significant bile leakage which required laparotomy. No mortality was reported in this series.
Conclusion: This technique was found to have distinct advantages such as shorter hospital stay, lesser postoperative pain and very good cosmesis. It is a safe procedure if performed by a well trained surgeon
Tripartite phase separation of two signal effectors with vesicles priming B cell responsiveness.
Antibody-mediated immune responses rely on antigen recognition by the B cell antigen receptor (BCR) and the proper engagement of its intracellular signal effector proteins. Src homology (SH) 2 domain-containing leukocyte protein of 65 kDa (SLP65) is the key scaffold protein mediating BCR signaling. In resting B cells, SLP65 colocalizes with Cbl-interacting protein of 85 kDa (CIN85) in cytoplasmic granules whose formation is not fully understood. Here we show that effective B cell activation requires tripartite phase separation of SLP65, CIN85, and lipid vesicles into droplets via vesicle binding of SLP65 and promiscuous interactions between nine SH3 domains of the trimeric CIN85 and the proline-rich motifs (PRMs) of SLP65. Vesicles are clustered and the dynamical structure of SLP65 persists in the droplet phase in vitro. Our results demonstrate that phase separation driven by concerted transient interactions between scaffold proteins and vesicles is a cellular mechanism to concentrate and organize signal transducers
A note on generalized characters
For a compactly generated LCA group G, it is shown that the set H(G) of all generalized characters on G equipped with the compact-open topology is a LCA group and H(G) = G^ (the dual group of G) if and only if G is compact. Both results fail for arbitrary LCA groups. Further, if G is second countable, then the Gel'fand space of the commutative convolution algebra Cc (G) equipped with the inductive limit topology is topologically homeomorphic to H(G)
Long-range order versus random-singlet phases in quantum antiferromagnetic systems with quenched disorder
The stability of antiferromagnetic long-range order against quenched disorder
is considered. A simple model of an antiferromagnet with a spatially varying
Neel temperature is shown to possess a nontrivial fixed point corresponding to
long-range order that is stable unless either the order parameter or the
spatial dimensionality exceeds a critical value. The instability of this fixed
point corresponds to the system entering a random-singlet phase. The
stabilization of long-range order is due to quantum fluctuations, whose role in
determining the phase diagram is discussed.Comment: 5 pp., REVTeX, epsf, 3 eps figs, final version as published,
including erratu
Spin Waves in Disordered III-V Diluted Magnetic Semiconductors
We propose a new scheme for numerically computing collective-mode spectra for
large-size systems, using a reformulation of the Random Phase Approximation. In
this study, we apply this method to investigate the spectrum and nature of the
spin-waves of a (III,Mn)V Diluted Magnetic Semiconductor. We use an impurity
band picture to describe the interaction of the charge carriers with the local
Mn spins. The spin-wave spectrum is shown to depend sensitively on the
positional disorder of the Mn atoms inside the host semiconductor. Both
localized and extended spin-wave modes are found. Unusual spin and charge
transport is implied.Comment: 14 pages, including 11 figure
Monte Carlo simulations of an impurity band model for III-V diluted magnetic semiconductors
We report the results of a Monte Carlo study of a model of (III,Mn)V diluted
magnetic semiconductors which uses an impurity band description of carriers
coupled to localized Mn spins and is applicable for carrier densities below and
around the metal-insulator transition. In agreement with mean field studies, we
find a transition to a ferromagnetic phase at low temperatures. We compare our
results for the magnetic properties with the mean field approximation, as well
as with experiments, and find favorable qualitative agreement with the latter.
The local Mn magnetization below the Curie temperature is found to be spatially
inhomogeneous, and strongly correlated with the local carrier charge density at
the Mn sites. The model contains fermions and classical spins and hence we
introduce a perturbative Monte Carlo scheme to increase the speed of our
simulations.Comment: 17 pages, 24 figures, 2 table
Renormalization group study of the two-dimensional random transverse-field Ising model
The infinite disorder fixed point of the random transverse-field Ising model
is expected to control the critical behavior of a large class of random quantum
and stochastic systems having an order parameter with discrete symmetry. Here
we study the model on the square lattice with a very efficient numerical
implementation of the strong disorder renormalization group method, which makes
us possible to treat finite samples of linear size up to . We have
calculated sample dependent pseudo-critical points and studied their
distribution, which is found to be characterized by the same shift and width
exponent: . For different types of disorder the infinite disorder
fixed point is shown to be characterized by the same set of critical exponents,
for which we have obtained improved estimates: and
. We have also studied the scaling behavior of the magnetization
in the vicinity of the critical point as well as dynamical scaling in the
ordered and disordered Griffiths phases
- …