23 research outputs found

    High dose intermittent sorafenib shows improved efficacy over conventional continuous dose in renal cell carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Renal cell carcinoma (RCC) responds to agents that inhibit vascular endothelial growth factor (VEGF) pathway. Sorafenib, a multikinase inhibitor of VEGF receptor, is effective at producing tumor responses and delaying median progression free survival in patients with cytokine refractory RCC. However, resistance to therapy develops at a median of 5 months. In an effort to increase efficacy, we studied the effects of increased sorafenib dose and intermittent scheduling in a murine RCC xenograft model.</p> <p>Methods</p> <p>Mice bearing xenografts derived from the 786-O RCC cell line were treated with sorafenib according to multiple doses and schedules: 1) Conventional dose (CD) continuous therapy; 2) high dose (HD) intermittent therapy, 3) CD intermittent therapy and 4) HD continuous therapy. Tumor diameter was measured daily. Microvessel density was assessed after 3 days to determine the early effects of therapy, and tumor perfusion was assessed serially by arterial spin labeled (ASL) MRI at day 0, 3, 7 and 10.</p> <p>Results</p> <p>Tumors that were treated with HD sorafenib exhibited slowed tumor growth as compared to CD using either schedule. HD intermittent therapy was superior to CD continous therapy, even though the total dose of sorafenib was essentially equivalent, and not significantly different than HD continuous therapy. The tumors exposed to HD sorafenib had lower microvessel density than the untreated or the CD groups. ASL MRI showed that tumor perfusion was reduced to a greater extent with the HD sorafenib at day 3 and at all time points thereafter relative to CD therapy. Further the intermittent schedule appeared to maintain RCC sensitivity to sorafenib as determined by changes in tumor perfusion.</p> <p>Conclusions</p> <p>A modification of the sorafenib dosing schedule involving higher dose intermittent treatment appeared to improve its efficacy in this xenograft model relative to conventional dosing. MRI perfusion imaging and histologic analysis suggest that this benefit is related to enhanced and protracted antiangiogenic activity. Thus, better understanding of dosing and schedule issues may lead to improved therapeutic effectiveness of VEGF directed therapy in RCC and possibly other tumors.</p

    Resistance of Renal Cell Carcinoma to Sorafenib Is Mediated by Potentially Reversible Gene Expression

    Get PDF
    Purpose: Resistance to antiangiogenic therapy is an important clinical problem. We examined whether resistance occurs at least in part via reversible, physiologic changes in the tumor, or results solely from stable genetic changes in resistant tumor cells. Experimental Design: Mice bearing two human RCC xenografts were treated with sorafenib until they acquired resistance. Resistant 786-O cells were harvested and reimplanted into naïve mice. Mice bearing resistant A498 cells were subjected to a 1 week treatment break. Sorafenib was then again administered to both sets of mice. Tumor growth patterns, gene expression, viability, blood vessel density, and perfusion were serially assessed in treated vs control mice. Results: Despite prior resistance, reimplanted 786-O tumors maintained their ability to stabilize on sorafenib in sequential reimplantation steps. A transcriptome profile of the tumors revealed that the gene expression profile of tumors upon reimplantation reapproximated that of the untreated tumors and was distinct from tumors exhibiting resistance to sorafenib. In A498 tumors, revascularization was noted with resistance and cessation of sorafenib therapy and tumor perfusion was reduced and tumor cell necrosis enhanced with re-exposure to sorafenib. Conclusions: In two RCC cell lines, resistance to sorafenib appears to be reversible. These results support the hypothesis that resistance to VEGF pathway therapy is not solely the result of a permanent genetic change in the tumor or selection of resistant clones, but rather is due to a great extent to reversible changes that likely occur in the tumor and/or its microenvironment

    Combining VEGF receptor inhibitors and angiotensin-(1–7) to target renal cell carcinoma

    No full text
    Resistance to tyrosine kinase inhibitors of the vascular endothelial growth factor receptor inevitably develops in most patients with metastatic kidney cancer. Our recent findings demonstrate that addition of angiotensin-(1-7) peptide can be a potential therapy that delays such resistance

    Alpha-fetoprotein (AFP) as tumor marker in a patient with urothelial cancer with exceptional response to anti-PD-1 therapy and an escape lesion mimic

    No full text
    Abstract The development of a new lesion in a patient with a complete remission to anti-PD-1 therapy is highly concerning for a drug resistant escape lesion. Here, we present a case of a 62-year-old patient with chemotherapy-resistant metastatic urothelial cancer who had a complete remission to pembrolizumab. The patient’s disease burden tracked closely to serum levels of alpha-fetoprotein (AFP) expressed by the tumor and served as an accurate tumor marker. Surveillance imaging revealed a solitary growing pulmonary nodule mimicking an escape lesion in the absence of an increase in AFP levels. Biopsy of this lesion revealed a benign intraparenchymal lymph node with no evidence of metastatic carcinoma. This case indicates that in some patients, biomarkers aberrantly expressed by their tumors, such as AFP in this patient, may be used as a tumor marker for response to anti-PD-1 therapy and emphasizes the importance of confirming potential escape lesions by pathologic examination
    corecore