11 research outputs found
Développement d'alliages à base de magnésium pour applications biomédicales
Étant donné leur capacité à se dégrader à l'intérieur du corps, les implants biodégradables ont fait l'objet de nombreuses recherches médicales. Parmi tous les matériaux, c'est le magnésium, un élément indispensable du corps humain, qui conduit aux résultats les plus favorables car son module d'Young est similaire à celui de l'os. De ce fait, les méthodes adoptées afin d'améliorer le comportement du magnésium pur vis-à-vis de la corrosion sont les suivantes: a)Ajout d'éléments d'alliage comme le zinc, le calcium et l'erbium (Mg-2Zn-2Er, Mg-2Zn-0.6Ca-1Er, etc.) pour contrôler le comportement de dégradation b) Procédés secondaires tels que l'extrusion pour modifier sa microstructure c)Revêtements de surface à base de fluorure pour mieux protéger la surface. La première partie de cette thèse porte sur la caractérisation microstructurale d'alliages. La caractérisation microstructurale révèle la présence de MgZn2, de phases W (Mg3Zn3Er2) et i (Mg3Zn6Er) dans différents alliages. L'évaluation des propriétés mécaniques a révélé une augmentation des propriétés de traction et de compression des alliages ternaires et quaternaires par rapport aux alliages de Mg et de Mg-2Zn. Ces propriétés mécaniques améliorées sont attribuées à une réduction de la taille des grains, à la présence d'atomes de soluté et à des phases secondaires. Mg-2Zn-2Er et Mg-3Zn-0.5Er présentaient une résistance à la corrosion améliorée en raison de la microstructure à granulométrie fine et d'une répartition uniforme des phases secondaires. La viabilité cellulaire a été améliorée avec l'épaisseur du temps de revêtement et ces alliages pourraient servir de candidats potentiels pour d'autres tests in vivo.With the ability to bio-degrade and thereby reducing the stress-shielding effect, biodegradable implants are of great importance in medical research. Among all the materials, magnesium is the one which shows promising results being bio-degradable and with the properties comparable with its young's modulus to that of bones. In the present study, the approaches adopted to improve the mechanical and corrosion behaviors of pure magnesium using carefully chosen: (a) Alloying elements like zinc, calcium and erbium (Mg-2Zn-2Er, Mg-2Zn-0.6Ca-1Er, etc.) to control the degradation behavior (b) Secondary processes like extrusion to alter and improve the microstructure (c) Surface treatments like fluoride coatings to further protect the surface to resist the rapid dissolution. The first part of this thesis focuses on the microstructural characterization of as-DMDed and as-extruded alloys. The microstructural characterization (XRD and TEM) reveals the presence of MgZn2, W-phase (Mg3Zn3Er2) and i-phases (Mg3Zn6Er) in different alloys. The mechanical property assessment revealed an increment in the tensile and compressive properties of ternary and quaternary alloys as compared to pure Mg and Mg-2Zn binary alloy. These values are attributed to a reduction in grain size, presence of solute atoms and secondary phases. Mg-2Zn-2Er and Mg-3Zn-0.5Er showed enhanced corrosion resistance due to the fine grain sized microstructure and a uniform distribution of secondary phases. The cell viability values were enhanced with increased coating time and it was found that these alloys could serve as potential candidates for further in-vivo tests to establish their applicability
Coating Technologies for Copper Based Antimicrobial Active Surfaces: A Perspective Review
Microbial contamination of medical devices and treatment rooms leads to several detrimental hospital and device-associated infections. Antimicrobial copper coatings are a new approach to control healthcare-associated infections (HAI’s). This review paper focuses on the efficient methods for depositing highly adherent copper-based antimicrobial coatings onto a variety of metal surfaces. Antimicrobial properties of the copper coatings produced by various deposition methods including thermal spray technique, electrodeposition, electroless plating, chemical vapor deposition (CVD), physical vapor deposition (PVD), and sputtering techniques are compared. The coating produced using different processes did not produce similar properties. Also, process parameters often could be varied for any given coating process to impart a change in structure, topography, wettability, hardness, surface roughness, and adhesion strength. In turn, all of them affect antimicrobial activity. Fundamental concepts of the coating process are described in detail by highlighting the influence of process parameters to increase antimicrobial activity. The strategies for developing antimicrobial surfaces could help in understanding the mechanism of killing the microbes
Corrosion behavior, microstructure and mechanical properties of novel mg-zn-ca-er alloy for bio-medical applications
10.3390/met11030519Metals113Jan-1
Surface Modification of 6xxx Series Aluminum Alloys
Due to their superior mechanical properties, formability, corrosion resistance, and lightweight nature, 6xxx series aluminum (Al) alloys are considered as a promising structural material. Nevertheless, the successful application of these materials depends on their response to the external environment. Recently, designers considered the surface properties an equally important aspect of the component design. Due to this concern, these alloys are subjected to varieties of surface modification methodologies. Many methodologies are explored to modify the 6xxx series Al alloys surfaces effectively. These methods are anodizing, plasma electrolytic oxidation (PEO), cladding, friction stir processing, friction surfacing, melting, alloying, and resolidification using high energy beams, etc. This review work discusses some of these methods, recent research activities on them, important process variables, and their role on the final properties of the surfaces
Influence of chemical composition and conversion coatings on the corrosion properties of Mg-Sn-xY (x= 0.5, 1 and 2 wt%) alloys,
International audienc
Microstructure and corrosion behavior of extruded mg‐sn‐y alloys
10.3390/met11071095Metals117109
Biocompatible silica-based magnesium composites
National audienc
Biocompatible silica-based magnesium composites
International audienceIn this study, an in-situ formed Mg2Si-Mg composite is investigated to understand the formation of Mg2Si and its influence in mechanical properties and corrosion behavior. A starting blend of 2.5 wt.% SiO2 nanoparticles and magnesium powders was used to elaborate in-situ composite through mechanical blending followed by spark plasma sintering technique. High temperature X-ray diffraction measurements and differential scanning calorimetry results confirmed the formation of Mg2Si phase. The addition of 2.5 wt.% SiO2 enhanced hardness while the stiffness values remained the same. The results of potentiodynamic polarization tests revealed an improved corrosion resistance of Mg reinforced with SiO2 nanoparticles. Thus, this work is an attempt to understand the fabrication (dissociation of silica into Mg2Si in presence of Mg) and corrosion properties of silica reinforced magnesium composites with those of pure magnesium targeting biomedical applications
Microstructure and Corrosion Behavior of Extruded Mg-Zn-Er Alloys
International audienc