11,404 research outputs found
Method of growing composites of the type exhibiting the Soret effect
A predetermine amount of segregation is introduced into a molten sample of a composite that exhibits the Soret effect, such amount approximating the amount of segregation resulting from directional solidification of the sample. The molten sample is then directionally solidified starting at the end opposite the end richer in the constituent that would migrate toward the cooler part of a liquid solution of the composite maintained in a temperature gradient. Since solidification commences at the end deficient in such constituent, its migration toward the interface between the solid and liquid during the solidification will compensate for the deficiency, yielding a more homogeneous product
Rolling contact fatigue life of chromium ion plated 440C bearing steel
Rolling contact fatigue (RCF) test specimens of heat treated 440C bearing steel were chromium ion plated in thicknesses from 0.1 to 8.0 micron and tested in RCF tester using 700 ksi maximum Hertzian stress. Heavy coatings, greater than about 5 micron in thickness, peeled off or spalled readily, whereas thin coatings, less than 3 micron thick, were tenacious and did not come off. Furthermore, significant improvement in RCF life was obtained with thin chromium ion plated test specimens. The average increase in B10 life was 75% compared with unplated 440C. These preliminary results indicate that ion plating is a promising way to improve bearing life
Fracture analysis of HPOTP bearing balls
The fracture analysis conducted on four HPOTP (High Pressure Oxygen Turbopump) bearing balls from the SSME (Space Shuttle Main Engine) is described. Nondestructive evaluation, optical microscopy, and transmission microscopy techniques were used in the analysis. The cracks are initiated at or close to the ball surface under conditions of high cyclic stresses and high coefficient of friction. The cracks lead to spalls and subsequent crack propagation occurs by fatigue mode under concentrated loading of cyclic nature
Phase separation in transparent liquid-liquid miscibility gap systems
A program to be carried out on transparent liquid-phase miscibility gap materials was developed for the purpose of acquiring additional insight into the separation process occurring in these systems. The transparency feature allows the reaction to be viewed directly through light scattering and holographic methods
Time Temperature-Precipitation Behavior in An Al-Cu-Li Alloy 2195
Al-Cu-Li alloy 2195, with its combination of good cryogenic properties, low density, and high modulus, has been selected by NASA to be the main structural alloy of the Super Light Weight Tank (SLWT) for the Space Shuttle. Alloy 2195 is strengthened by an aging treatment that precipitates a particular precipitate, labeled as T1(Al2CuLi). Other phases, such as GP zone, (theta)', (theta)", theta, (delta)', S' are also present in this alloy when artificially aged. Cryogenic strength and fracture toughness are critical to the -SLWT application, since the SLWT will house liquid oxygen and hydrogen. Motivation for the Time-Temperature-Precipitation (TTP) study at lower temperature (lower than 350 F) comes in part from a recent study by Chen, The study found that the cryogenic fracture toughness of alloy 2195 is greatly influenced by the phases present in the matrix and subgrain boundaries. Therefore, the understanding of TTP behavior can help develop a guideline to select appropriate heat treatment conditions for the desirable applications. The study of TTP behavior at higher temperature (400 to 1000 F) was prompted by the fact that the SLWT requires a welded construction. Heat conduction from the weld pool affects the microstructure in the heat-affected zone (HAZ), which leads to changes in the mechanical properties. Furthermore, the SLWT may need repair welding for more than one time and any additional thermal cycles will increase precipitate instability and promote phase transformation. As a result considerable changes in HAZ microstructure and mechanical properties are expected during the construction of the SLWT. Therefore, the TTP diagrams can serve to understand the thermal history of the alloy by analyzing the welded microstructure. In the case welding, the effects of thermal cycles on the microstructure and mechanical properties can be predicted with the aid of the TTP diagrams. The 2195 alloy (nominally Al + 4 pct Cu + 1 pct Li + 0.3 pct Ag + 0.3 pct Mg + 0.1 pct Zr) used in this study was received in the form of 1.7 inch thick rolled plates. In brief goal of this study is to develop TTR diagram for the solutiontreated and stretched alloy 2195 from which the precipitation sequence at any service or aging conditions can be preducted.A subgrain boundary TTR diagram is also presented since precipitations at subgrain boundary can control and/or modify a wide veriety of material properties, such as cryogenic fracture toughness
- …