2 research outputs found
Importance of the amino terminus in maintenance of oligomeric structure of sheep liver cytosolic serine hydroxymethyltransferase
The role of the amino and carboxyl-terminal regions of cytosolic serine hydroxymethyltransferase (SHMT) in subunit assembly and catalysis was studied using six amino-terminal (lacking the first 6, 14, 30, 49, 58, and 75 residues) and two carboxyl-terminal (lacking the last 49 and 185 residues) deletion mutants. These mutants were constructed from a full length cDNA clone using restriction enzyme/PCR-based methods and overexpressed in Escherichia coli. The overexpressed proteins, des-(A1-K6)-SHMT and des-(A1- W14)-SHMT were present in the soluble fraction and they were purified to homogeneity. The deletion clones, for des-(A1-V30)-SHMT and des-(A1-L49)-SHMT were expressed at very low levels, whereas des-(A1-R58)-SHMT, des-(A1-G75)-SHMT, des-(Q435-F483)-SHMT and des-(L299-F483)-SHMT mutant proteins were not soluble and formed inclusion bodies. Des-(A1-K6)-SHMT and des-(A1-W14)-SHMT catalyzed both the tetrahydrofolate-dependent and tetrahydrofolate-independent reactions, generating characteristic spectral intermediates with glycine and tetrahydrofolate. The two mutants had similar kinetic parameters to that of the recombinant SHMT (rSHMT). However, at 55°C, the des-(A1-W14)-SHMT lost almost all the activity within 5 min, while at the same temperature rSHMT and des-(A1-K6)-SHMT retained 85% and 70% activity, respectively. Thermal denaturation studies showed that des-(A1-W14)-SHMT had a lower apparent melting temperature (52°C) compared to rSHMT (56°C) and des-(A1-K6)-SHMT (55°C), suggesting that N-terminal deletion had resulted in a decrease in the thermal stability of the enzyme. Further, urea induced inactivation of the enzymes revealed that 50% inactivation occurred at a lower urea concentration (1.2 ± 0.1 M) in the case of des-(A1-W14)-SHMT compared to rSHMT (1.8 ± 0.1 M) and des-(A1-K6)-SHMT (1.7 ± 0.1 M). The apoenzyme of des-(A1- W14)-SHMT was present predominantly in the dimer form, whereas the apoenzymes of rSHMT and des-(A1-K6)-SHMT were a mixture of tetramers (≈75% and ≈65%, respectively) and dimers. While, rSHMT and des-(A1-K6)-SHMT apoenzymes could be reconstituted upon the addition of pyridoxal-5′-phosphate to 96% and 94% enzyme activity, respectively, des-(A1-W14)-SHMT apoenzyme could be reconstituted only upto 22%. The percentage activity regained correlated with the appearance of visible CD at 425 nm and with the amount of enzyme present in the tetrameric form upon reconstitution as monitored by gel filtration. These results demonstrate that, in addition to the cofactor, the N-terminal arm plays an important role in stabilizing the tetrameric structure of SHMT
Interaction of sheep liver apo-serine hydroxymethyltransferase with pyridoxal-5'-phosphate: A physicochemical, kinetic, and thermodynamic study
Sheep liver serine hydroxymethyltransferase (EC 2.1.2.1) is a homotetramer of M(r) 213,000 requiring pyridoxal-5'-phosphate (PLP) as cofactor, Removal of PLP from the holoenzyme converted the enzyme to the apo form which, in addition to being inactive, was devoid of the characteristic absorption spectrum. Upon the addition of PLP to the apoenzyme, complete activity was restored and the visible absorption spectrum with a maximum at 425 nm was regained. The interaction of PLP with the apoenzyme revealed two phases of reaction with pseudo-first-order rate constants of 20 +/- 5 s(-1) and 12.2 +/- 2.0 x 10(-3) s(-1), respectively. However, addition of PLP to the apoenzyme did not cause gross conformational changes as evidenced by circular dichroic and fluorescence spectroscopy. Although conformationally apoenzyme and holoenzyme were indistinguishable, they had distinct apparent melting temperatures of 51 +/- 2 and 58 +/- 2 degrees C, respectively, and the reconstituted holoenzyme was thermally as stable as the native holoenzyme. These results suggested that there was no apparent difference in the secondary structure of holoenzyme, apoenzyme, and reconstituted holoenzyme, However, sedimentation analysis of the apoenzyme revealed the presence of two peaks of S-20,S-w values of 8.7 +/- 0.5 and 5.7 +/- 0.3 S, respectively. A similar pattern was observed when the apoenzyme was chromatographed on a calibrated Sephadex G-150 column. The first peak corresponded to the tetrameric form (M(r) 200,000 +/- 15,000) while the second peak had a M(r) of 130,000 +/- 10,000. Reconstitution experiments revealed that only the tetrameric form of the apoenzyme could be converted into an active holoenzyme while the dimeric form could not be reconstituted into an active enzyme. These results demonstrate that PLP plays an important role in maintaining the structural integrity of the enzyme by preventing the dissociation of the enzyme into subunits, in addition to its function in catalysis. (C) 1996 Academic Press, Inc