119 research outputs found
Effect of Cationic Surfactant Head Groups on Synthesis, Growth and Agglomeration Behavior of ZnS Nanoparticles
Colloidal nanodispersions of ZnS have been prepared using aqueous micellar solution of two cationic surfactants of trimethylammonium/pyridinium series with different head groups i.e., cetyltrimethylammonium chloride (CTAC) and cetyltrimethylpyridinium chloride (CPyC). The role of these surfactants in controlling size, agglomeration behavior and photophysical properties of ZnS nanoparticles has been discussed. UVβvisible spectroscopy has been carried out for determination of optical band gap and size of ZnS nanoparticles. Transmission electron microscopy and dynamic light scattering were used to measure sizes and size distribution of ZnS nanoparticles. Powder X-ray analysis (Powder XRD) reveals the cubic structure of nanocrystallite in powdered sample. The photoluminescence emission band exhibits red shift for ZnS nanoparticles in CTAC compared to those in CPyC. The aggregation behavior in two surfactants has been compared using turbidity measurements after redispersing the nanoparticles in water. In situ evolution and growth of ZnS nanoparticles in two different surfactants have been compared through time-dependent absorption behavior and UV irradiation studies. Electrical conductivity measurements reveal that CPyC micelles better stabilize the nanoparticles than that of CTAC
Multiaxial fatigue studies on carbon steel piping material of Indian PHWRs
The tests studies and analyses have been carried out in the area of βMultiaxial Fatigueβ with an objective to improve the damage assessment methodologies and design rules. Nearly 50 numbers of fatigue tests were conducted on solid and tubular specimens of SA333Gr.6 material under pure axial, pure shear and combined axial-torsion in-phase/ out-of-phase loading combinations. A software has been developed for the evaluation of multiaxial fatigue damage for the analyses of tests data using different invariant fatigue models such as ASME Sec.III code procedures, von-Mises etc. The fatigue crack initiation life was predicted using the best fit axial fatigue life curve (without use of safety factors). These tests and their analyses have helped
in understanding the fatigue failure behavior of piping material under complex cyclic loadings where the principal directions rotate during a loading cycle. The crack initiation angles have also been measured by analyzing the image of the tested specimens. The measured crack angles will help in validation of the critical plane based models
Atypical right diaphragmatic hernia (hernia of Morgagni), spigelian hernia and epigastric hernia in a patient with Williams syndrome: a case report
<p>Abstract</p> <p>Introduction</p> <p>Williams syndrome is rare genetic disorder resulting in neurodevelopmental problems. Hernias of the foramen of Morgagni are rare diaphragmatic hernias and they mostly present on the right side, in the anterior mediastinum. They are usually asymptomatic and are difficult to diagnose, especially in patients with learning disabilities.</p> <p>Case presentation</p> <p>This 49-year-old woman with Williams syndrome, cognitive impairment and aortic stenosis presented to physicians with right-sided chest pain. She had previously undergone repair of her right spigelian and epigastric hernia. Her abdominal examination was unremarkable. Chest X-ray suggested right-sided diaphragmatic hernia and pleural effusion for which she received treatment. The computed tomography scan showed a diaphragmatic hernia with some collapse/consolidation of the adjacent lung. Furthermore, the patient had aortic stenosis and was high risk for anaesthesia (ASA grade 3). She underwent successful laparoscopic repair of her congenital diaphragmatic hernia leading to a quick and uneventful postoperative recovery.</p> <p>Conclusion</p> <p>These multiple hernias suggest that patients with Williams syndrome may have some connective tissue disorder which makes them prone to develop hernias especially associated with those parts of the body which may have intracavity pressure variations like the abdomen. Diaphragmatic hernia may be the cause of chest pain in these patients. A computed tomography scan helps in early diagnosis, and laparoscopic repair helps in prevention of further complications, and leads to quick recovery especially in patients with learning disabilities. In the presence of significant comorbidities, a less invasive operative procedure with quick recovery becomes advisable.</p
Eight common genetic variants associated with serum dheas levels suggest a key role in ageing mechanisms
Dehydroepiandrosterone sulphate (DHEAS) is the most abundant circulating steroid secreted by adrenal glands-yet its function is unknown. Its serum concentration declines significantly with increasing age, which has led to speculation that a relative DHEAS deficiency may contribute to the development of common age-related diseases or diminished longevity. We conducted a meta-analysis of genome-wide association data with 14,846 individuals and identified eight independent common SNPs associated with serum DHEAS concentrations. Genes at or near the identified loci include ZKSCAN5 (rs11761528; p = 3.15Γ10-36), SULT2A1 (rs2637125; p = 2.61Γ10-19), ARPC1A (rs740160; p = 1.56Γ10-16), TRIM4 (rs17277546; p = 4.50Γ10-11), BMF (rs7181230; p = 5.44Γ10-11), HHEX (rs2497306; p = 4.64Γ10-9), BCL2L11 (rs6738028; p = 1.72Γ10-8), and CYP2C9 (rs2185570; p = 2.29Γ10-8). These genes are associated with type 2 diabetes, lymphoma, actin filament assembly, drug and xenobiotic metabolism, and zinc finger proteins. Several SNPs were associated with changes in gene expression levels, and the related genes are connected to biological pathways linking DHEAS with ageing. This study provides much needed insight into the function of DHEAS
NatF Contributes to an Evolutionary Shift in Protein N-Terminal Acetylation and Is Important for Normal Chromosome Segregation
N-terminal acetylation (N-Ac) is a highly abundant eukaryotic protein modification. Proteomics revealed a significant increase in the occurrence of N-Ac from lower to higher eukaryotes, but evidence explaining the underlying molecular mechanism(s) is currently lacking. We first analysed protein N-termini and their acetylation degrees, suggesting that evolution of substrates is not a major cause for the evolutionary shift in N-Ac. Further, we investigated the presence of putative N-terminal acetyltransferases (NATs) in higher eukaryotes. The purified recombinant human and Drosophila homologues of a novel NAT candidate was subjected to in vitro peptide library acetylation assays. This provided evidence for its NAT activity targeting Met-Lys- and other Met-starting protein N-termini, and the enzyme was termed Naa60p and its activity NatF. Its in vivo activity was investigated by ectopically expressing human Naa60p in yeast followed by N-terminal COFRADIC analyses. hNaa60p acetylated distinct Met-starting yeast protein N-termini and increased general acetylation levels, thereby altering yeast in vivo acetylation patterns towards those of higher eukaryotes. Further, its activity in human cells was verified by overexpression and knockdown of hNAA60 followed by N-terminal COFRADIC. NatF's cellular impact was demonstrated in Drosophila cells where NAA60 knockdown induced chromosomal segregation defects. In summary, our study revealed a novel major protein modifier contributing to the evolution of N-Ac, redundancy among NATs, and an essential regulator of normal chromosome segregation. With the characterization of NatF, the co-translational N-Ac machinery appears complete since all the major substrate groups in eukaryotes are accounted for
NR-2L: A Two-Level Predictor for Identifying Nuclear Receptor Subfamilies Based on Sequence-Derived Features
Nuclear receptors (NRs) are one of the most abundant classes of transcriptional regulators in animals. They regulate diverse functions, such as homeostasis, reproduction, development and metabolism. Therefore, NRs are a very important target for drug development. Nuclear receptors form a superfamily of phylogenetically related proteins and have been subdivided into different subfamilies due to their domain diversity. In this study, a two-level predictor, called NR-2L, was developed that can be used to identify a query protein as a nuclear receptor or not based on its sequence information alone; if it is, the prediction will be automatically continued to further identify it among the following seven subfamilies: (1) thyroid hormone like (NR1), (2) HNF4-like (NR2), (3) estrogen like, (4) nerve growth factor IB-like (NR4), (5) fushi tarazu-F1 like (NR5), (6) germ cell nuclear factor like (NR6), and (7) knirps like (NR0). The identification was made by the Fuzzy K nearest neighbor (FK-NN) classifier based on the pseudo amino acid composition formed by incorporating various physicochemical and statistical features derived from the protein sequences, such as amino acid composition, dipeptide composition, complexity factor, and low-frequency Fourier spectrum components. As a demonstration, it was shown through some benchmark datasets derived from the NucleaRDB and UniProt with low redundancy that the overall success rates achieved by the jackknife test were about 93% and 89% in the first and second level, respectively. The high success rates indicate that the novel two-level predictor can be a useful vehicle for identifying NRs and their subfamilies. As a user-friendly web server, NR-2L is freely accessible at either http://icpr.jci.edu.cn/bioinfo/NR2L or http://www.jci-bioinfo.cn/NR2L. Each job submitted to NR-2L can contain up to 500 query protein sequences and be finished in less than 2 minutes. The less the number of query proteins is, the shorter the time will usually be. All the program codes for NR-2L are available for non-commercial purpose upon request
The effect of maternal undernutrition on the rat placental transcriptome: protein restriction up-regulates cholesterol transport
Fetal exposure to a maternal low protein diet during rat pregnancy is associated with hypertension, renal dysfunction and metabolic disturbance in adult life. These effects are present when dietary manipulations target only the first half of pregnancy. It was hypothesised that early gestation protein restriction would impact upon placental gene expression and that this may give clues to the mechanism which links maternal diet to later consequences. Pregnant rats were fed control or a low protein diet from conception to day 13 gestation. Placentas were collected and RNA Sequencing performed using the Illumina platform. Protein restriction down-regulated 67 genes and up-regulated 24 genes in the placenta. Ingenuity pathway analysis showed significant enrichment in pathways related to cholesterol and lipoprotein transport and metabolism, including atherosclerosis signalling, clathrin-mediated endocytosis, LXR/RXR and FXR/RXR activation. Genes at the centre of these processes included the apolipoproteins ApoB, ApoA2 and ApoC2, microsomal triglyceride transfer protein (Mttp), the clathrin-endocytosis receptor cubilin, the transcription factor retinol binding protein 4 (Rbp4) and transerythrin (Ttr; a retinol and thyroid hormone transporter). Real-time PCR measurements largely confirmed the findings of RNASeq and indicated that the impact of protein restriction was often striking (cubilin up-regulated 32-fold, apoC2 up-regulated 17.6-fold). The findings show that gene expression in specific pathways is modulated by maternal protein restriction in the day-13 rat placenta. Changes in cholesterol transport may contribute to altered tissue development in the fetus and hence programme risk of disease in later life
Effective Rheology of Bubbles Moving in a Capillary Tube
We calculate the average volumetric flux versus pressure drop of bubbles
moving in a single capillary tube with varying diameter, finding a square-root
relation from mapping the flow equations onto that of a driven overdamped
pendulum. The calculation is based on a derivation of the equation of motion of
a bubble train from considering the capillary forces and the entropy production
associated with the viscous flow. We also calculate the configurational
probability of the positions of the bubbles.Comment: 4 pages, 1 figur
Tuftsin Promotes an Anti-Inflammatory Switch and Attenuates Symptoms in Experimental Autoimmune Encephalomyelitis
Multiple sclerosis (MS) is a demyelinating autoimmune disease mediated by infiltration of T cells into the central nervous system after compromise of the blood-brain barrier. We have previously shown that administration of tuftsin, a macrophage/microglial activator, dramatically improves the clinical course of experimental autoimmune encephalomyelitis (EAE), a well-established animal model for MS. Tuftsin administration correlates with upregulation of the immunosuppressive Helper-2 Tcell (Th2) cytokine transcription factor GATA-3. We now show that tuftsin-mediated microglial activation results in shifting microglia to an anti-inflammatory phenotype. Moreover, the T cell phenotype is shifted towards immunoprotection after exposure to tuftsin-treated activated microglia; specifically, downregulation of pro-inflammatory Th1 responses is triggered in conjunction with upregulation of Th2-specific responses and expansion of immunosuppressive regulatory T cells (Tregs). Finally, tuftsin-shifted T cells, delivered into animals via adoptive transfer, reverse the pathology observed in mice with established EAE. Taken together, our findings demonstrate that tuftsin decreases the proinflammatory environment of EAE and may represent a therapeutic opportunity for treatment of MS
- β¦