76 research outputs found

    Genomic Modeling as an Approach to Identify Surrogates for Use in Experimental Validation of SARS-CoV-2 and HuNoV Inactivation by UV-C Treatment

    Get PDF
    Severe Acute Respiratory Syndrome coronavirus-2 (SARS-CoV-2) is responsible for the COVID-19 pandemic that continues to pose significant public health concerns. While research to deliver vaccines and antivirals are being pursued, various effective technologies to control its environmental spread are also being targeted. Ultraviolet light (UV-C) technologies are effective against a broad spectrum of microorganisms when used even on large surface areas. In this study, we developed a pyrimidine dinucleotide frequency based genomic model to predict the sensitivity of select enveloped and non-enveloped viruses to UV-C treatments in order to identify potential SARS-CoV-2 and human norovirus surrogates. The results revealed that this model was best fitted using linear regression with r2 = 0.90. The predicted UV-C sensitivity (D90 – dose for 90% inactivation) for SARS-CoV-2 and MERS-CoV was found to be 21.5 and 28 J/m2, respectively (with an estimated 18 J/m2 obtained from published experimental data for SARS-CoV-1), suggesting that coronaviruses are highly sensitive to UV-C light compared to other ssRNA viruses used in this modeling study. Murine hepatitis virus (MHV) A59 strain with a D90 of 21 J/m2 close to that of SARS-CoV-2 was identified as a suitable surrogate to validate SARS-CoV-2 inactivation by UV-C treatment. Furthermore, the non-enveloped human noroviruses (HuNoVs), had predicted D90 values of 69.1, 89, and 77.6 J/m2 for genogroups GI, GII, and GIV, respectively. Murine norovirus (MNV-1) of GV with a D90 = 100 J/m2 was identified as a potential conservative surrogate for UV-C inactivation of these HuNoVs. This study provides useful insights for the identification of potential non-pathogenic (to humans) surrogates to understand inactivation kinetics and their use in experimental validation of UV-C disinfection systems. This approach can be used to narrow the number of surrogates used in testing UV-C inactivation of other human and animal ssRNA viral pathogens for experimental validation that can save cost, labor and time

    Warm dense matter and cooling of supernovae remnants

    Full text link
    We study the thermal effects on the nuclear matter (NM) properties such as binding energy, incompressibility, free symmetry energy and its coefficients using NL3, G3 and IU-FSU parameter sets of relativistic mean-field models. These models being consistent with the properties of cold NM, have also been used to study the effect of temperature by incorporating the Fermi function. The critical temperature for the liquid-gas phase transition in the symmetric NM is found to be 14.60, 15.37 and 14.50 MeV for NL3, G3 and IU-FSU parameter sets respectively, which is in excellent agreement with previous theoretical and experimental studies. We inspect that the properties related to second differential coefficient of the binding energy and free symmetry energy at saturation density ( i.e. K 0 (n, T ) and Q sym,0) exhibit the contrary effects for NL3 and G3 parameters as the temperature increases. We find that the prediction of saturated curvature parameter ( K sym,0 ) for G3 equation of state at finite temperature favour the combined analysis of K sym,0 for the existence of massive pulsars, gravitational waves from GW170817 and NICER observations of PSR J0030+0451. Further, we investigate the cooling mechanism of newly born stars through neutrino emissivity controlled by direct Urca process and instate some interesting remarks about neutrino emissivity. We also deliberate the effect of temperature on the M-R profile of Proto-Neutron star.Comment: 15 pages, 11 figures. 3 tables, Published in EPJ

    Developing an environmental friendly approach for enhancing water retention with the amendment of water-absorbing polymer and fertilizers

    Get PDF
    The effect of climate/environmental change has resulted in adverse water stress conditions which necessitates the sustainable approaches for improving the water use efficiency to boost agricultural production in Central Asia. Water-absorbing polymer (WAP) has emerged as one of the amendments for soil water stress management. WAP are chemically cross-linked structure capable of absorbing and storing a large amount of water. The agricultural land has different levels of fertilizers which can influence the performance of WAP because of its sensitivity due to external ionic medium. Therefore, the combined or hybrid use of WAP and organic/ inorganic fertilizers may inhibit the functionality of WAP, which needs to be thoroughly investigated. This study demonstrates the performance of two different WAPs (a commercially WAP (crosslinked potassium polyacrylate) and a laboratory synthesized WAP (crosslinked fly ash-polyacrylate superabsorbent composite)) with varying combinations of fertilizers in silt loam (agrarian soil). The combined use of fertilizers and WAP have improved the water retention properties of soils due to modification in the soil pore volume for both the WAPs. Quantification from water retention properties revealed a significant increase in plant wilting time (PWT) and plant available water content (PAWC) under the combined influence of fertilizers and WAP amended soils, indicating the possibility of high-water availability to plant roots. The study suggests the potential of WAPs as an efficient soil conditioner even in the presence of fertilizer for countering the negative impacts of water stress conditions. WAPs might minimize the requirement for chemical fertilizers, which helps to enhance the climate/environmental change and agriculture sector in the Central Asian region

    Efficacy of ultraviolet (UV-C) light in reducing foodborne pathogens and model viruses in skim milk

    Get PDF
    The efficacy of low wavelength ultraviolet light (UV-C) as a disinfection process for a scattering fluid such as skim milk was investigated in this study. UV-C inactivation kinetics of two surrogate viruses (bacteriophages MS2 and T1UV) and three bacteria Escherichia coli ATCC 25922, S. Typhimurium ATCC 13311, Listeria monocytogenes ATCC 19115 in buffer and skim milk were investigated. UV-C irradiation was applied to stirred samples, using a collimated beam operating at 253.7 nm wavelength. A series of known UV-C doses (0–40 mJ·cm−2) were delivered to the samples except MS2 where higher doses (0–150 mJ·cm−2) were delivered. Biodosimetry, utilizing D values of viruses inactivated in buffer, was carried out to verify and calculate reduction equivalent dose. At the highest dose of 40 mJ·cm−2, the three pathogenic organisms were inactivated by more than 5 log10 (p \u3c .05). Results provide evidence that UV-C irradiation effectively inactivated bacteriophage and pathogenic microbes in skim milk. The inactivation kinetics of microorganisms was well described by log linear and exponential models with a low root mean squared error and high coefficient of determination (r2 \u3e 0.96). Models were validated and parameterized for predicting log reduction as a function of UV-C irradiation dose (p \u3c .05). This study clearly demonstrated that high levels of inactivation of pathogens can be achieved in skim milk, and suggests significant potential for UV-C treatment of treating fluids that exhibit significant scattering. Practical application This research paper provides scientific evidence of the potential use of UV technology in inactivating pathogenic bacteria and model viruses in skim milk. UV-C doses were validated and verified using biodosimetry. UV-C irradiation is an attractive food preservation technology and offers opportunities for dairy and food processing industries to meet the growing demand from consumers for safer food products. This study clearly shows the potential for using UV-C treatment for treating highly scattering fluid such as skim milk. Results from this work will be used to further develop continuous flow-through UV-C systems based on dean or turbulent flow patterns

    Closing the Gaps: Endoscopic Suturing for Large Submucosal and Full-Thickness Defects

    Get PDF
    This article is a systematic review of relevant literature on endoscopic suturing as a primary closure technique for large submucosal and full-thickness defects after endoscopic mucosal resection (EMR), endoscopic submucosal dissection (ESD), and endoscopic full-thickness resection (EFTR). A comprehensive literature search was conducted through 2016 by using PubMed, to find peer-reviewed original articles. The specific factors considered were the procedural indications and details, success rates, clinical outcomes including complications, and study limitations. Six original articles were included in the final review: two with non-human subjects and four with human subjects. The mean success rate of endoscopic suturing was 97.4% (100% for human subjects and 95.4% for non-human subjects). The procedural time ranged from 7 to 89 min. The average size and depth of lesions were 2.71 cm (3.74 cm [human] and 1.96 cm [non-human]) and 1.52 cm, respectively. The technique itself had no reported impact on mortality. In conclusion, endoscopic suturing is a minimally invasive technique for the primary closure of defects caused by EMR, ESD, and EFTR, with a high success and low complication rate

    Microbial inactivation and cytotoxicity evaluation of UV irradiated coconut water in a novel continuous flow spiral reactor

    Get PDF
    A continuous-flow UV reactor operating at 254 nm wave-length was used to investigate inactivation of microorganisms including bacteriophage in coconut water, a highly opaque liquid food. UV-C inactivation kinetics of two surrogate viruses (MS2, T1UV) and three bacteria (E. coli ATCC 25922, Salmonella Typhimurium ATCC 13311, Listeria monocytogenes ATCC 19115) in buffer and coconut water were investigated (D10 values ranging from 2.82 to 4.54 mJ·cm− 2). A series of known UV-C doses were delivered to the samples. Inactivation levels of all organisms were linearly proportional to UV-C dose (r2 \u3e 0.97). At the highest dose of 30 mJ·cm− 2, the three pathogenic organisms were inactivated by \u3e 5 log10 (p \u3c 0.05). Results clearly demonstrated that UV-C irradiation effectively inactivated bacteriophage and pathogenic microbes in coconut water. The inactivation kinetics of microorganisms were best described by log linear model with a low root mean square error (RMSE) and high coefficient of determination (r2 \u3e 0.97). Models for predicting log reduction as a function of UV-C irradiation dose were found to be significant (p \u3c 0.05) with low RMSE and high r2. The irradiated coconut water showed no cytotoxic effects on normal human intestinal cells and normal mouse liver cells. Overall, these results indicated that UV-C treatment did not generate cytotoxic compounds in the coconut water. This study clearly demonstrated that high levels of inactivation of pathogens can be achieved in coconut water, and suggested potential method for UV-C treatment of other liquid foods. Industrial relevance This research paper provides scientific evidence of the potential benefits of UV-C irradiation in inactivating bacterial and viral surrogates at commercially relevant doses of 0–120 mJ·cm− 2. The irradiated coconut water showed no cytotoxic effects on normal intestinal and healthy mice liver cells. UV-C irradiation is an attractive food preservation technology and offers opportunities for horticultural and food processing industries to meet the growing demand from consumers for healthier and safe food products. This study would provide technical support for commercialization of UV-C treatment of beverages

    Groundwater hydrochemistry of Rajnandgaon district, Chhattisgarh, Central India

    Get PDF
    The spreading of fluorosis diseases in Central India related to high concentrations of fluoride ion (F−) is a cause of major concern. In this work, the hydrochemistry of the aquifers related to Seonath River, in Rajnandgaon district, Chhattisgarh state, India, has been studied, focusing on the presence and sources of F−. Hydrochemical parameters were analyzed in the post-monsoon season in 160 wells located in nine tehsils, finding F− concentrations ranging from 0.6 to 18.5 mg L−1. Seasonal variations were also studied in Chhuikhadan tehsil, in which the highest F− values were registered, finding a noticeable enrichment in the pre-monsoon months. In many locations of the district, F− concentrations exceeded the recommended value of 1.5 mg L−1, which have led to the appearance of several health issues. Multidimensional analysis statistical methods were adopted to investigate the sources of F−, and the mineralization of bedrock elements into the groundwater was observed to be the primary source

    CD11b suppresses TLR activation of nonclassical monocytes to reduce primary graft dysfunction after lung transplantation

    Get PDF
    Primary graft dysfunction (PGD) is the leading cause of postoperative mortality in lung transplant recipients and the most important risk factor for development of chronic lung allograft dysfunction. The mechanistic basis for the variability in the incidence and severity of PGD between lung transplant recipients is not known. Using a murine orthotopic vascularized lung transplant model, we found that redundant activation of Toll-like receptors 2 and 4 (TLR2 and -4) on nonclassical monocytes activates MyD88, inducing the release of the neutrophil attractant chemokine CXCL2. Deletion of Itgam (encodes CD11b) in nonclassical monocytes enhanced their production of CXCL2 and worsened PGD, while a CD11b agonist, leukadherin-1, administered only to the donor lung prior to lung transplantation, abrogated CXCL2 production and PGD. The damage-associated molecular pattern molecule HMGB1 was increased in peripheral blood samples from patients undergoing lung transplantation after reperfusion and induced CXCL2 production in nonclassical monocytes via TLR4/MyD88. An inhibitor of HMGB1 administered to the donor and recipient prior to lung transplantation attenuated PGD. Our findings suggest that CD11b acts as a molecular brake to prevent neutrophil recruitment by nonclassical monocytes following lung transplantation, revealing an attractive therapeutic target in the donor lung to prevent PGD in lung transplant recipients
    • …
    corecore