25 research outputs found

    Amino-Functionalized Silica Nanoparticles: In Vitro Evaluation for Targeted Delivery and Therapy of Pancreatic Cancer

    Get PDF
    We report a method of synthesis and optimization of amino-functionalized silica nanoparticles (SiNPs) and their in vitro evaluation as targeted delivery vehicles for the potential treatment of pancreatic cancer. SiNPs can efficiently encapsulate doxorubicin and can be attached to a targeting moiety such as anti-Claudin-4 (CLN4). The preferential uptake in pancreatic cancer cells, where CLN4 is overexpressed, of SiNPs when conjugated to CLN4 antibody (compared to nonconjugated SiNPs) was confirmed by confocal microscopy. SiNPs encapsulating doxorubicin had greater efficacy in MTT assays than free doxorubicin, and when conjugated to CLN4, the efficacy was dramatically increased (at 1 μM). No apparent carrier toxicity was observed when void SiNPs were used. SiNPs carrying a chemotherapeutic drug have the potential to be used as a targeted therapy for lethal cancers, such as pancreatic cancer. Also, incorporation of fluorescent probes in these SiNPs creates the possibility of their use as an imaging probe for diagnostic purposes

    Pharmacokinetics, biodistribution, and anti-angiogenesis efficacy of diamino propane tetraiodothyroacetic acid-conjugated biodegradable polymeric nanoparticle

    Get PDF
    The anti-angiogenic agent, diamino propane tetraiodothyroacetic acid (DAT), is a thyro-integrin (integrin alpha v beta 3) antagonist anticancer agent that works via genetic and nongenetic actions. Tetraiodothyroacetic acid (tetrac) and DAT as thyroid hormone derivatives influence gene expression after they transport across cellular membranes. To restrict the action of DAT to the integrin alpha v beta 3 receptors on the cell surface, we used DAT-conjugated PLGA nanoparticles (NDAT) in an active targeting mode to bind to these receptors. Preparation and characterization of NDAT is described, and both in vitro and in vivo experiments were done to compare DAT to NDAT. Intracellular uptake and distribution of DAT and NDAT in U87 glioblastoma cells were evaluated using confocal microscopy and showed that DAT reached the nucleus, but NDAT was restricted from the nucleus. Pharmacokinetic studies using LC-MS/MS analysis in male C57BL/6 mice showed that administration of NDAT improved the area under the drug concentration curve AUC(()(0-)(48 h)) by 4-fold at a dose of 3 mg/kg when compared with DAT, and C-max of NDAT (4363 ng/mL) was 8-fold greater than that of DAT (548 ng/ mL). Biodistribution studies in the mice showed that the concentrations of NDAT were higher than DAT/Cremophor EL micelles in heart, lung, liver, spleen, and kidney. In another mouse model using female NCr nude homozygous mice with U87 xenografts, tumor growth was significantly decreased at doses of 1 and 3 mg/kg of NDAT. In the chick chorioallantoic membrane (CAM) assay used to measure angiogenesis, DAT (500 ng/CAM) resulted in 48% inhibition of angiogenesis levels. In comparison, NDAT at low dose (50 ng/CAM) showed 45% inhibition of angiogenesis levels. Our investigation of NDAT bridges the study of polymeric nanoparticles and anti-angiogenic agents and offers new insight for the rational design of anti-angiogenic agents.Pharmaceutical Research Institute (PRI)NanoPharmaceuticals LLC (Rensselaer, NY, USA

    Targeted delivery of cisplatin to tumor xenografts via the nanoparticle component of nano-diamino-tetrac

    Get PDF
    Aim: Nano-diamino-tetrac (NDAT) targets a receptor on integrin alpha v beta 3; alpha v beta 3 is generously expressed by cancer cells and dividing endothelial cells and to a small extent by nonmalignant cells. The tetrac (tetraiodothyroacetic acid) of NDAT is covalently bound to a poly(lactic-co-glycolic acid) nanoparticle that encapsulates anticancer drugs. We report NDAT delivery efficiency of cisplatin to agent-susceptible urinary bladder cancer xenografts. Materials & methods: Cisplatin-loaded NDAT (NDAT-cisplatin) was administered to xenograft-bearing nude mice. Tumor size response and drug content were measured. Results: Intratumoral drug concentration was up to fivefold higher (p NDAT without cisplatin > cisplatin alone. Conclusion: NDAT markedly enhances cisplatin delivery to urinary bladder cancer xenografts and increases drug efficacy.NanoPharmaceuticals LLC (NY, USA)NanoPharmaceuticals LL

    Tetraiodothyroacetic acid (Tetrac) and nanoparticulate tetrac arrest growth of medullary carcinoma of the thyroid

    Get PDF
    Context: Tetraiodothyroacetic acid (tetrac) blocks angiogenic and tumor cell proliferation actions of thyroid hormone initiated at the cell surface hormone receptor on integrin alpha v beta 3. Tetrac also inhibits angiogenesis initiated by vascular endothelial growth factor and basic fibroblast growth factor. Objective: We tested antiangiogenic and antiproliferative efficacy of tetrac and tetrac nanoparticles (tetrac NP) against human medullary thyroid carcinoma (h-MTC) implants in the chick chorioallantoic membrane (CAM) and h-MTC xenografts in the nude mouse. Design: h-MTCcells were implanted in the CAM model (n = 8 per group); effects of tetrac and tetrac NP at 1 mu g/CAM were determined on tumor angiogenesis and tumor growth after 8 d. h-MTC cells were also implanted sc in nude mice (n = 6 animals per group), and actions on established tumor growth of unmodified tetrac and tetrac NP ip were determined. Results: In the CAM, tetrac and tetrac NP inhibited tumor growth and tumor-associated angiogenesis. In the nude mouse xenograft model, established 450-500 mm(3) h-MTC tumors were reduced in size over 21 d by both tetrac formulations to less than the initial cell mass (100 mm(3)). Tumor tissue hemoglobin content of xenografts decreased by 66% over the course of administration of each drug. RNA microarray and quantitative real-time PCR of tumor cell mRNAs revealed that both tetrac formulations significantly induced antiangiogenic thrombospondin 1 and apoptosis activator gene expression. Conclusions: Acting via a cell surface receptor, tetrac and tetrac NP inhibit growth of h-MTC cells and associated angiogenesis in CAM and mouse xenograft models.Charitable Leadership Foundation/Medical Technology Acceleration ProgramPharmaceutical Research Institute of Albany College of Pharmac

    Tetraiodothyroacetic acid-conjugated PLGA nanoparticles: A nanomedicine approach to treat drug-resistant breast cancer

    No full text
    Aim: The aim was to evaluate tetraiodothyroacetic acid (tetrac), a thyroid hormone analog of l-thyroxin, conjugated to poly(lactic-co-glycolic acid) nanoparticles (T-PLGA-NPs) both in vitro and in vivo for the treatment of drug-resistant breast cancer. Materials & methods: The uptake of tetrac and T-PLGA-NPs in doxorubicin-resistant MCF7 (MCF7-Dx) cells was evaluated using confocal microscopy. Cell proliferation assays and a chick chorioallantoic membrane model of FGF2-induced angiogenesis were used to evaluate the anticancer effects of T-PLGA-NPs. In vivo efficacy was examined in a MCF7-Dx orthotopic tumor BALBc nude mouse model. Results: T-PLGA-NPs were restricted from entering into the cell nucleus, and T-PLGA-NPs inhibited angiogenesis by 100% compared with 60% by free tetrac. T-PLGA-NPs enhanced inhibition of tumor-cell proliferation at a low-dose equivalent of free tetrac. In vivo treatment with either tetrac or T-PLGA-NPs resulted in a three- to five-fold inhibition of tumor weight. Conclusion: T-PLGA-NPs have high potential as anticancer agents, with possible applications in the treatment of drug-resistant cancer. Original submitted 2 May 2012; Revised submitted 21 November 2012United States Department of Health & Human Services National Institutes of Health (NIH) - USA (1R21 CA135245-01A1)Charitable Leadership Foundation (Clifton Park, NY, USA)Medical Technology Acceleration Program (Clifton Park, NY, USA)Pharmaceutical Research Institute (PRI, Rensselaer, NY, USA)United States Department of Health & Human Services National Institutes of Health (NIH) - USA NIH National Cancer Institute (NCI) (R21CA135245

    Alpha v beta 3 integrin antagonists enhance chemotherapy response in an orthotopic pancreatic cancer model

    No full text
    Pancreatic cancer decreases survival time and quality of life because of drug resistance and peripheral neuropathy during conventional treatment. This study was undertaken to investigate whether alpha v beta 3 integrin receptor antagonist compounds NDAT and XT199 can suppress the development of cisplatin resistance and cisplatin-induced peripheral neuropathy in an orthotopic pancreatic SUIT2-luc cancer cell mouse model. Anticancer effects of these compounds and their combination with cisplatin were assessed in this tumor mouse model with bioluminescent signaling and histopathology, and a cytokine assay was used to examine expression of inflammatory cytokines IL-1 beta, IL-6, IL-10, and TNF-alpha from plasma samples. To determine the neuroprotective effects of the compounds on cisplatin-induced peripheral neuropathy, behavioral hind-limb posture of the mice was evaluated. The combination therapy of NDAT or XT199 with cisplatin elicited greater inhibition of tumor growth and increased tumor necrosis compared to cisplatin alone. NDAT and XT199 in combination with cisplatin significantly decreased expression of pro-inflammatory cytokines IL-1 beta, IL-6, and TNF-alpha and significantly increased expression of anti-inflammatory cytokine IL-10 in comparison to cisplatin alone. Cisplatin-treated groups showed stocking-glove hind-limb posture, whereas NDAT and XT199 with cisplatin-treated groups displayed normal hind-limb posture. Results clearly suggest that NDAT and XT199 treatment with cisplatin that inactivates NF-kappa B may contribute to increased antitumor and anti-inflammatory efficacy as well as alleviate cisplatin-mediated loss of motor function in this pancreatic tumor mouse model.Pharmaceutical Research Institute at Albany College of Pharmacy Health and Science

    Nanoparticles and cancer therapy: A concise review with emphasis on dendrimers

    No full text
    Dhruba J Bharali, Marianne Khalil, Mujgan Gurbuz, Tessa M Simone, Shaker A MousaPharmaceutical Research Institute at Albany College of Pharmacy, Rensselaer, NY, USAAbstract: The emergence of nanotechnology has had a profound effect on many areas of healthcare and scientific research. Having grown exponentially, the focus of nanotechnology has been on engineering diversified novel applications that even go beyond therapeutic activity; nanotechnology also offers the ability to detect diseases, such as cancer, much earlier than ever imaginable. Often, patients diagnosed with breast, lung, colon, prostate, and ovarian cancer have hidden or overt metastatic colonies. With the advent of diagnostic nanotechnology, these numbers are expected to greatly diminish. This review provides a brief description of nanoparticle (liposome, quantum dot, and dendrimer)-mediated cancer therapy in the last decade with an emphasis on the development and use of dendrimers in cancer therapeutics.Keywords: nanoparticles, dendrimer, quantum dots, liposom
    corecore