25 research outputs found

    Femtosecond laser inscription of nonlinear photonic circuits in Gallium Lanthanum Sulphide glass

    Full text link
    We report on femtosecond laser writing of single mode optical waveguides in chalcogenide Gallium Lanthanum Sulphide (GLS) glass. A multiscan fabrication process was employed to create waveguides with symmetric single mode guidance and low insertion losses at 800 nm wavelength, compatible with Ti:Sapphire ultrafast lasers. {\mu}Raman and X-Ray microanalysis were used to elucidate the origin of the laser-induced refractive index change in GLS. Nonlinear refractive index measurements of the waveguides were performed by finding the optical switching parameters of a directional coupler, demonstrating that the nonlinear properties were preserved, evidencing that GLS is a promising platform for laser-written integrated nonlinear photonics

    Optical NP problem solver on laser-written waveguide platform

    Get PDF
    Cognitive photonic networks are researched to efficiently solve computationally hard problems. Flexible fabrication techniques for the implementation of such networks into compact and scalable chips are desirable for the study of new optical computing schemes and algorithm optimization. Here we demonstrate a femtosecond laser-written optical oracle based on cascaded directional couplers in glass, for the solution of the Hamiltonian path problem. By interrogating the integrated photonic chip with ultrashort laser pulses, we were able to distinguish the different paths traveled by light pulses, and thus infer the existence or the absence of the Hamiltonian path in the network by using an optical correlator. This work proves that graph theory problems may be easily implemented in integrated photonic networks, down scaling the net size and speeding up execution times

    Diamond photonics platform enabled by femtosecond laser writing

    Get PDF
    We demonstrate the first buried optical waveguides in diamond using focused femtosecond laser pulses. The properties of nitrogen vacancy centers are preserved in the waveguides, making them promising for diamond-based magnetometers or quantum information systems.Comment: 24 pages, 6 figure

    Origin of femtosecond laser induced periodic nanostructure on diamond

    Get PDF
    We study the evolution of periodic nanostructures formed on the surface of diamond by femtosecond laser irradiation delivering 230 fs pulses at 1030 nm and 515 nm wavelengths with a repetition rate of 250 kHz. Using scanning electron microscopy, we observe a change in the periodicity of the nanostructures by varying the number of pulses overlapping in the laser focal volume. We simulate the evolution of the period of the high spatial frequency laser induced periodic surface structures at the two wavelengths as a function of number of pulses, accounting for the change in the optical properties of diamond via a generalized plasmonic model. We propose a hypothesis that describes the origin of the nanostructures and the principal role of plasmonic excitation in their formation during multipulse femtosecond laser irradiation

    On-chip single-photon subtraction by individual silicon vacancy centers in a laser-written diamond waveguide

    Get PDF
    Modifying light fields at single-photon level is a key challenge for upcoming quantum technologies and can be realized in a scalable manner through integrated quantum photonics. Laser-written diamond photonics offers three-dimensional fabrication capabilities and large mode-field diameters matched to fiber optic technology, though limiting the cooperativity at the single-emitter level. To realize large cooperativities, we combine excitation of single shallow-implanted silicon vacancy centers via large numerical aperture optics with detection assisted by laser-written type-II waveguides. We demonstrate single-emitter extinction measurements with a cooperativity of 0.153 and a beta factor of 13% yielding 15.3% as lower bound for the quantum efficiency of a single emitter. The transmission of resonant photons reveals single-photon subtraction from a quasi-coherent field resulting in super-Poissonian light statistics. Our architecture enables single quantum level light field engineering in an integrated design which can be fabricated in three dimensions and with a natural connectivity to optical fiber arrays.Comment: 8 pages, 4 figure

    Super-poissonian light statistics from individual silicon vacancy centers coupled to a laser-written diamond waveguide

    Get PDF
    Modifying light fields at the single-photon level is a key challenge for upcoming quantum technologies and can be realized in a scalable manner through integrated quantum photonics. Laser-written diamond photonics offers 3D fabrication capabilities and large mode-field diameters matched to fiber optic technology, though limiting the cooperativity at the single-emitter level. To realize large coupling efficiencies, we combine excitation of single shallow-implanted silicon vacancy centers via high numerical aperture optics with detection assisted by laser-written type-II waveguides. We demonstrate single-emitter extinction measurements with a cooperativity of 0.0050 and a relative beta factor of 13%. The transmission of resonant photons reveals single-photon subtraction from a quasi-coherent field resulting in super-Poissonian light statistics. Our architecture enables light field engineering in an integrated design on the single quantum level although the intrinsic cooperativity is low. Laser-written structures can be fabricated in three dimensions and with a natural connectivity to optical fiber arrays

    Quantum micro–nano devices fabricated in diamond by femtosecond laser and ion irradiation

    Get PDF
    Diamond has attracted great interest as a quantum technology platform thanks to its optically active nitrogen vacancy (NV) center. The NV's ground state spin can be read out optically, exhibiting long spin coherence times of ≈1 ms even at ambient temperatures. In addition, the energy levels of the NV are sensitive to external fields. These properties make NVs attractive as a scalable platform for efficient nanoscale resolution sensing based on electron spins and for quantum information systems. Diamond photonics enhance optical interactions with NVs, beneficial for both quantum sensing and information. Diamond is also compelling for microfluidic applications due to its outstanding biocompatibility, with sensing functionality provided by NVs. However, it remains a significant challenge to fabricate photonics, NVs, and microfluidics in diamond. In this Progress Report, an overview is provided of ion irradiation and femtosecond laser writing, two promising fabrication methods for diamond‐based quantum technological devices. The unique capabilities of both techniques are described, and the most important fabrication results of color center, optical waveguide, and microfluidics in diamond are reported, with an emphasis on integrated devices aiming toward high performance quantum sensors and quantum information systems of tomorrow

    Integrated magnetometry platform with stackable waveguide-assisted detection channels for sensing arrays

    Get PDF
    The negatively charged nitrogen vacancy (N-V−) center in diamond has shown great success in nanoscale, high-sensitivity magnetometry. Efficient fluorescence detection is crucial for improving the sensitivity. Furthermore, integrated devices enable practicable sensors. Here, we present an integrated architecture which allows us to create N-V− centers a few nanometers below the diamond surface, and at the same time covering the entire mode field of femtosecond-laser-written type-II waveguides. We experimentally verify the coupling efficiency, showcase the detection of magnetic resonance signals through the waveguides and perform proof-of-principle experiments in magnetic field and temperature sensing. The sensing task can be operated via the waveguide without direct light illumination through the sample, which is important for magnetometry in biological systems that are sensitive to light. In the future, our approach will enable the development of two-dimensional sensing arrays facilitating spatially and temporally correlated magnetometry
    corecore