4 research outputs found

    Effect of Stress and Interface defects on Photo Luminescence of Si nano-crystals embedded in SiO2

    No full text
    Effect of stress and interface defects on photo luminescence property of a silicon nano-crystal (Si-nc) embedded in amorphous silicon dioxide (a-SiO2) are studied in this paper using a self-consistent quantum-continuum based modeling framework. Si-ncs or quantum dots show photoluminescence at room temperature. Whether its origin is due to Si-nc/a-SiO2 interface defects or quantum confinement of carriers in Si-nc is still an outstanding question. Earlier reports have shown that stresses greater than 12 GPa change the indirect energy band gap structure of bulk Si to a direct energy band gap structure. Such stresses are observed very often in nanostructures and these stresses influence the carrier confinement energy significantly. Hence, it is important to determine the effect of stress in addition to the structure of interface defects on photoluminescence property of Si-nc. In the present work, first a Si-nc embedded in a-SiO2 is constructed using molecular dynamics simulation framework considering the actual conditions they are grown so that the interface and residual stress in the structure evolves naturally during formation. We observe that the structure thus created has an interface of about 1 nm thick consisting of 41.95% of defective states mostly Sin+ (n = 0 to 3) coordination states. Further, both the Si-nc core and the embedding matrix are observed to be under a compressive strain. This residual strain field is applied in an effective mass k.p Hamiltonian formulation to determine the energy states of the carriers. The photo luminescence property computed based on the carrier confinement energy and interface energy states associated with defects will be analysed in details in the paper

    A model of coupled thermal, mechanical, and electrostatic field effects in III-N thin film heterostructures

    No full text
    A one-dimensional coupled multi-physics based model has been developed to accurately compute the effects of electrostatic, mechanical, and thermal field interactions on the electronic energy band structure in group III-nitrides thin film heterostructures. Earlier models reported in published literature assumes electro-mechanical field with uniform temperature thus neglecting self-heating. Also, the effects of diffused interface on the energy band structure were not studied. We include these effects in a self-consistent manner wherein the transport equation is introduced along with the electro-mechanical models, and the lattice structural variation as observed in experiments are introduced at the interface. Due to these effects, the electrostatic potential distribution in the heterostructure is altered. The electron and hole ground state energies decrease by 5% and 9%, respectively, at a relative temperature of 700 K, when compared with the results obtained from the previously reported electro-mechanical model assuming constant and uniform temperature distribution. A diffused interface decreases the ground state energy of electrons and holes by about 11% and 9%, respectively, at a relative temperature of 700 K when compared with the predictions based on uniform temperature based electro-mechanical model. (C) 2013 AIP Publishing LLC

    Embedded silicon nanocrystal interface structure and strain

    No full text
    The structure of nanocrystal-matrix interface and strain in embedded nanocrystals are studied using large-scale atomistic simulations, with the examples of Si nanocrystal embedded in amorphous matrix of SiO2. Photoluminescence from silicon nanocrystals embedded in a dielectric matrix like SiO2 and Si3N4 are promising for Si-based optical devices. The nanocrystal-matrix interface plays a crucial role in understanding its optical and electrical properties. Nanocrystals with diameters varying from 2.17 to 4.56 nm are studied. A detailed quantitative analysis of the variation of Si/SiO2 interface structure and strain distribution with nanocrystal diameter is reported. A linear variation of the interface width with nanocrystal diameter is observed with thinner interfaces for larger nanocrystals. Local deformation analysis reveals that the smaller nanocrystals are highly strained, whereas the strain in the larger ones shifts to the interface. This is in accordance with observed increase in total percentage of defect states in the interface from 39 to 70% for diameter increasing from 2.17 to 4.56 nm. Moreover, based on the atomic arrangements at the interface, optically active defects like Pb centres, E centres and non-bridging oxygen centres are identified and a dominance of Pb centres is observed for all the nanocrystals. The detailed structural characterization-related investigations using the proposed simulation approach will find useful application in designing system-level response of embedded nanocrystals and also to correlate various experimental observations
    corecore