24 research outputs found

    Assessment of body composition and association with clinical outcomes in patients with lung and colorectal cancer

    Get PDF
    OBJECTIVES: To assess body composition in patients with non-small cell lung cancer (NSCLC) and colorectal cancer using whole-body MRI and relate this to clinical outcomes. METHODS: 53 patients with NSCLC (28 males, 25 females; mean age 66.9) and 74 patients with colorectal cancer (42 males, 32 females; mean age 62.9) underwent staging whole-body MRI scans, which were post-processed to derive fat mass (FM), fat free mass (FFM) and skeletal muscle (SM) indices and SM fat fraction (FF). These were compared between the two cancer cohorts using two-sided t-tests and the chi-squared test. Measurements of body composition were correlated with outcomes including length of hospital stay, metastatic status and mortality. RESULTS: Patients with NSCLC had significantly lower FFM (p = 0.0071) and SM (p = 0.0084) indices. Mean SM FF was greater in patients with NSCLC (p = 0.0124) and was associated with longer hospital stay (p = 0.035). There was no significant relationship between FM, FFM and SM indices and length of hospital stay, metastatic status or mortality. CONCLUSIONS: Patients with NSCLC had lower FFM and SM indices than patients with colorectal cancer and greater SMFF, indicating lower SM mass with fatty infiltration. These findings reflect differences in the phenotype of the two groups and suggest patients with lung cancer are more likely to require additional nutritional support. ADVANCES IN KNOWLEDGE: Body composition differs between NSCLC and colorectal cancer. Patients with NSCLC have both a reduced SM mass and greater SM FF suggesting that they are more nutritionally deplete than patients with colorectal cancer

    Imaging features for the prediction of clinical endpoints in chronic liver disease: a scoping review protocol

    Get PDF
    INTRODUCTION: Chronic liver disease is a growing cause of morbidity and mortality in the UK. Acute presentation with advanced disease is common and prioritisation of resources to those at highest risk at earlier disease stages is essential to improving patient outcomes. Existing prognostic tools are of limited accuracy and to date no imaging-based tools are used in clinical practice, despite multiple anatomical imaging features that worsen with disease severity.In this paper, we outline our scoping review protocol that aims to provide an overview of existing prognostic factors and models that link anatomical imaging features with clinical endpoints in chronic liver disease. This will provide a summary of the number, type and methods used by existing imaging feature-based prognostic studies and indicate if there are sufficient studies to justify future systematic reviews. METHODS AND ANALYSIS: The protocol was developed in accordance with existing scoping review guidelines. Searches of MEDLINE and Embase will be conducted using titles, abstracts and Medical Subject Headings restricted to publications after 1980 to ensure imaging method relevance on OvidSP. Initial screening will be undertaken by two independent reviewers. Full-text data extraction will be undertaken by three pretrained reviewers who have participated in a group data extraction session to ensure reviewer consensus and reduce inter-rater variability. Where needed, data extraction queries will be resolved by reviewer team discussion. Reporting of results will be based on grouping of related factors and their cumulative frequencies. Prognostic anatomical imaging features and clinical endpoints will be reported using descriptive statistics to summarise the number of studies, study characteristics and the statistical methods used. ETHICS AND DISSEMINATION: Ethical approval is not required as this study is based on previously published work. Findings will be disseminated by peer-reviewed publication and/or conference presentations

    Gut-brain axis dysfunction underlies FODMAP-induced symptom generation in irritable bowel syndrome

    No full text
    Background: FODMAPs produce similar small bowel water and colonic gas in patients with irritable bowel syndrome (IBS) and healthy controls (HCs), despite IBS patients reporting increased gastrointestinal (GI) symptoms. Aim: To unravel the mechanisms underlying FODMAP-induced symptom reporting, we investigated gut and brain responses to fructan administration in IBS patients and HC. Methods: This randomised, double-blind, cross-over study consisted of three visits where fructans (40 g/500 mL saline), glucose (40 g/500 mL saline) or saline (500 mL) were infused intragastrically during 1 h MR brain scanning; abdominal MRI was performed before, 1 h, and 2 h post-infusion. Symptoms were rated using validated scales. Results: In IBS (n = 13), fructans induced more cramps, pain, flatulence and nausea compared to glucose (P = 0.03, 0.001, 0.009 and  0.14), with between-group differences for cramps and nausea (P = 0.004 and 0.023). Fructans increased small bowel motility and ascending colonic gas and volume equally in IBS and HC (between-group P > 0.25). The difference in colonic gas between fructans and saline covaried with differences in bloating and cramps in IBS (P = 0.008 and 0.035 respectively). Pain-related brain regions responded differentially to fructans in IBS compared to HC, including the cerebellum, supramarginal gyrus, anterior and midcingulate cortex, insula and thalamus (pFWE-corrected < 0.05); these brain responses covaried with symptom responses in IBS. Conclusions: Fructans increase small bowel motility and colon gas and volume similarly in IBS patients and HC. Increased symptom responses to fructans in IBS covary with altered brain responses in pain-related regions, indicating that gut-brain axis dysregulation may drive FODMAP-induced symptom generation in IBS

    CD161(+)CD4(+) T cells are enriched in the liver during chronic hepatitis and associated with co-secretion of IL-22 and IFN-γ.

    Get PDF
    Hepatitis C virus infection is a major cause of chronic liver disease. CD4(+) T cells play a key role in disease outcome. However, the critical functions and associated phenotypes of intrahepatic CD4(+) T cells are not well defined. We have previously shown that CD8(+) T cells expressing the C type lectin CD161 are highly enriched in the human liver, especially during chronic hepatitis. These cells are associated with a type 17 differentiation pattern and express cytokines including IL-17A, IL-22, and IFN-γ. We therefore analyzed expression of CD161 on CD4(+) T cells in blood and liver and addressed the relevant phenotype and functional capacity of these populations. We observed marked enrichment of CD161(+)CD4(+) T cells in the liver during chronic hepatitis such that they are the dominant subtype (mean 55% of CD4(+) T cells). IL-22 and IL-17 secreting CD4(+) T cells were readily found in the livers of HCV(+) and NASH donors, although not enriched compared to blood. There was, however, specific enrichment of a novel subset of IL-22/IFN-γ dual secretors (p = 0.02) compared to blood, a result reconfirmed with direct ex vivo analyses. These data indicate the dominance of CD161(+) expressing lymphocyte populations within the hepatic infiltrate, associated with a distinct cytokine profile. Given their documented roles as antiviral and hepatoprotective cytokines respectively, the impact of co-secretion of IFN-γ and IL-22 in the liver may be particularly significant
    corecore