28 research outputs found

    Edge Saturation effects on the magnetism and band gaps in multilayer graphene ribbons and flakes

    Full text link
    Using a density functional theory based electronic structure method and semi-local density approximation, we study the interplay of geometric confinement, magnetism and external electric fields on the electronic structure and the resulting band gaps of multilayer graphene ribbons whose edges are saturated with molecular hydrogen (H2_2) or hydroxyl (OH) groups. We discuss the similarities and differences of computed features in comparison with the atomic hydrogen (or H-) saturated ribbons and flakes. For H2_2 edge-saturation, we find \emph{shifted} labeling of three armchair ribbon classes and magnetic to non-magnetic transition in narrow zigzag ribbons whose critical width changes with the number of layers. Other computed characteristics, such as the existence of a critical gap and external electric field behavior, layer dependent electronic structure, stacking-dependent band gap induction and the length confinement effects remain qualitatively same with those of H-saturated ribbons.Comment: 9 pages, 10 figures, submitte

    Effects of edge magnetism and external electric field on energy gaps in multilayer graphene nanoribbons

    Full text link
    Using first-principles density-functional theory, we study the electronic structure of multilayer graphene nanoribbons as a function of the ribbon width and the external electric field, applied perpendicular to the ribbon layers. We consider two types of edges (armchair and zigzag), each with two edge alignments (referred to as alpha- and beta-alignments). We show that, as in monolayer and bilayer armchair nanoribbons, multilayer armchair nanoribbons exhibit three classes of energy gaps which decrease with increasing width. Nonmagnetic multilayer zigzag nanoribbons have band structures that are sensitive to the edge alignments and the number of layers, indicating different magnetic properties and resulting energy gaps. We find that energy gaps can be induced in ABC-stacked ribbons with a perpendicular external electric field while in other stacking sequences, the gaps decrease or remain closed as the external electric field increases.Comment: 7 pages, 9 figures, text revised, last version before publicatio

    Ab Initio Theory of Gate Induced Gaps in Graphene Bilayers

    Full text link
    We study the gate voltage induced gap that occurs in graphene bilayers using \textit{ab initio} density functional theory. Our calculations confirm the qualitative picture suggested by phenomenological tight-binding and continuum models. We discuss enhanced screening of the external interlayer potential at small gate voltages, which is more pronounced in the \textit{ab initio} calculations, and quantify the role of crystalline inhomogeneity using a tight-binding model self-consistent Hartree calculation.Comment: 7 pages, 7 figures; the effect of r3 coupling included; typo correcte

    Density Functional Study of Ternary Topological Insulator Thin Films

    Get PDF
    Using an ab-initio density functional theory based electronic structure method with a semi-local density approximation, we study thin-film electronic properties of two topological insulators based on ternary compounds of Tl (Thallium) and Bi (Bismuth). We consider TlBiX2_2 (X=Se, Te) and Bi2_2XX_2Y(X,Y=Se,Te)compoundswhichprovidebetterDiraccones,comparedtothemodelbinarycompoundsBiY (X,Y= Se,Te) compounds which provide better Dirac cones, compared to the model binary compounds Bi_2XX_3$ (X=Se, Te). With this property in combination with a structurally perfect bulk crystal, the latter ternary compound has been found to have improved surface electronic transport in recent experiments. In this article, we discuss the nature of surface states, their locations in the Brillouin zone and their interactions within the bulk region. Our calculations suggest a critical thin film thickness to maintain the Dirac cone which is significantly smaller than that in binary Bi-based compounds. Atomic relaxations or rearrangements are found to affect the Dirac cone in some of these compounds. And with the help of layer-projected surface charge densities, we discuss the penetration depth of the surface states into the bulk region. The electronic spectrum of these ternary compounds agrees very well with the available experimental results.Comment: 9 pages, 11 figures, 1 table, Accepted for publication in Physical Review

    Dielectric capping effects on binary and ternary topological insulator surface states

    Get PDF
    Using a density functional based electronic structure method, we study the effect of crystalline dielectrics on the metallic surface states of Bismuth- and chalcogen-based binary and ternary three dimensional topological insulator (TI) thin films. Crystalline quartz (SiO2) and boron nitride (BN) dielectrics were considered. Crystalline approximation to the amorphous quartz allows to study the effect of oxygen coverage or environmental effects on the surface states degradation which has gained attention recently in the experimental community. We considered both symmetric and asymmetric dielectric cappings to the sufaces of TI thin films. Our studies suggest that BN and quartz cappings have negligible effects on the Dirac cone surface states of both binary and ternary TIs, except in the case of an oxygen-terminated quartz surface. Dangling bond states of oxygens in oxygen-terminated quartz dominate the region close to Fermi level, thereby distorting the TI Dirac cone feature and burying the Dirac point in the quartz valence band region. Passivating the oxygen-terminated surface with atomic hydrogen removes these dangling bond states from the Fermi surface region, and consequently the clear Dirac cone is recovered. Our results are consistent with recent experimental studies of TI surface degradation in the presence of oxygen coverage.Comment: 11 pages, 15 figures, Accepted for publication in Physical Review

    Density functional theory based study of graphene and dielectric oxide interfaces

    Full text link
    We study the effects of insulating oxides in their crystalline forms on the energy band structure of monolayer and bilayer graphene using a \textit{first principles} density functional theory based electronic structure method and a local density approximation. We consider the dielectric oxides, SiO2_{2} (α\alpha-quartz) and Al2_{2}O3_{3} (alumina or α\alpha-sapphire) each with two surface terminations. Our study suggests that atomic relaxations and resulting equilibrium separations play a critical role in perturbing the linear band structure of graphene in contrast to the less critical role played by dangling bonds that result from cleaving the crystal in a particular direction. We also see that with the addition of a second graphene layer, the Dirac cone is restored for the quartz surface terminations. Alumina needs more than two graphene layers to preserve the Dirac cone. Our results are at best semi-quantitative for the common amorphous forms of the oxides considered. However, crystalline oxides for which our results are quantitative provide an interesting option for graphene based electronics, particularly in light of recent experiments on graphene with crystalline dielectrics (hexagonal BN) that find considerable improvements in transport properties as compared to the those with amorphous dielectrics
    corecore