5 research outputs found

    MIR205HG/LEADR Long Noncoding RNA Binds to Primed Proximal Regulatory Regions in Prostate Basal Cells Through a Triplex- and Alu-Mediated Mechanism

    Get PDF
    Aside serving as host gene for miR-205, MIR205HG transcribes for a chromatin-associated long noncoding RNA (lncRNA) able to restrain the differentiation of prostate basal cells, thus being reannotated as LEADR (Long Epithelial Alu-interacting Differentiation-related RNA). We previously showed the presence of Alu sequences in the promoters of genes modulated upon MIR205HG/LEADR manipulation. Notably, an Alu element also spans the first and second exons of MIR205HG/LEADR, suggesting its possible involvement in target selection/binding. Here, we performed ChIRP-seq to map MIR205HG/LEADR chromatin occupancy at genome-wide level in prostate basal cells. Our results confirmed preferential binding to regions proximal to gene transcription start site (TSS). Moreover, enrichment of triplex-forming sequences was found upstream of MIR205HG/LEADR-bound genes, peaking at −1,500/−500 bp from TSS. Triplexes formed with one or two putative DNA binding sites within MIR205HG/LEADR sequence, located just upstream of the Alu element. Notably, triplex-forming regions of bound genes were themselves enriched in Alu elements. These data suggest, from one side, that triplex formation may be the prevalent mechanism by which MIR205HG/LEADR selects and physically interacts with target DNA, from the other that direct or protein-mediated Alu (RNA)/Alu (DNA) interaction may represent a further functional requirement. We also found that triplex-forming regions were enriched in specific histone modifications, including H3K4me1 in the absence of H3K27ac, H3K4me3 and H3K27me3, indicating that in prostate basal cells MIR205HG/LEADR may preferentially bind to primed proximal regulatory elements. This may underscore the need for basal cells to keep MIR205HG/LEADR target genes repressed but, at the same time, responsive to differentiation cues

    NF-Y Overexpression in Liver Hepatocellular Carcinoma (HCC)

    No full text
    NF-Y is a pioneer trimeric transcription factor formed by the Histone Fold Domain (HFD) NF-YB/NF-YC subunits and NF-YA. Three subunits are required for DNA binding. CCAAT-specificity resides in NF-YA and transactivation resides in Q-rich domains of NF-YA and NF-YC. They are involved in alternative splicing (AS). We recently showed that NF-YA is overexpressed in breast and lung carcinomas. We report here on the overexpression of all subunits in the liver hepatocellular carcinoma (HCC) TCGA database, specifically the short NF-YAs and NF-YC2 (37 kDa) isoforms. This is observed at all tumor stages, in viral-infected samples and independently from the inflammatory status. Up-regulation of NF-YAs and NF-YC, but not NF-YB, is associated to tumors with mutant p53. We used a deep-learning-based method (DeepCC) to extend the partitioning of the three molecular clusters to all HCC TCGA tumors. In iCluster3, CCAAT is a primary matrix found in promoters of up-regulated genes, and cell-cycle pathways are enriched. Finally, clinical data indicate that, globally, only NF-YAs, but not HFD subunits, correlate with the worst prognosis; in iCluster1 patients, however, all subunits correlate. The data show a difference with other epithelial cancers, in that global overexpression of the three subunits is reported and clinically relevant in a subset of patients; yet, they further reinstate the regulatory role of the sequence-specific subunit

    NF-Y Subunits Overexpression in HNSCC

    No full text
    NF-Y is the CCAAT-binding trimer formed by the histone fold domain (HFD), NF-YB/NF-YC and NF-YA. The CCAAT box is generally prevalent in promoters of “cancer” genes. We reported the overexpression of NF-YA in BRCA, LUAD and LUSC, and of all subunits in HCC. Altered splicing of NF-YA was found in breast and lung cancer. We analyzed RNA-seq datasets of TCGA and cell lines of head and neck squamous cell carcinomas (HNSCC). We partitioned all TCGA data into four subtypes, deconvoluted single-cell RNA-seq of tumors and derived survival curves. The CCAAT box was enriched in the promoters of overexpressed genes. The “short” NF-YAs was overexpressed in all subtypes and the “long” NF-YAl in Mesenchymal. The HFD subunits are overexpressed, except Basal (NF-YB) and Atypical (NF-YC); NF-YAl is increased in p53 mutated tumors. In HPV-positive tumors, high levels of NF-YAs, p16 and ΔNp63 correlate with better prognosis. Deconvolution of single cell RNA-seq (scRNA-seq) found a correlation of NF-YAl with Cancer Associated Fibroblasts (CAFs) and p-EMT cells, a population endowed with metastatic potential. We conclude that overexpression of HFD subunits and NF-YAs is protective in HPV-positive tumors; expression of NF-YAl is largely confined to mutp53 tumors and malignant p-EMT cells

    NF-YA Overexpression in Lung Cancer: LUAD

    No full text
    The trimeric transcription factor (TF) NF-Y regulates the CCAAT box, a DNA element enriched in promoters of genes overexpressed in many types of cancer. The regulatory NF-YA is present in two major isoforms, NF-YAl (“long”) and NF-YAs (“short”). There is growing indication that NF-YA levels are increased in tumors. Here, we report interrogation of RNA-Seq TCGA (The Cancer Genome Atlas)—all 576 samples—and GEO (Gene Expression Ominibus) datasets of lung adenocarcinoma (LUAD). NF-YAs is overexpressed in the three subtypes, proliferative, inflammatory, and TRU (terminal respiratory unit). CCAAT is enriched in promoters of tumor differently expressed genes (DEG) and in the proliferative/inflammatory intersection, matching with KEGG (Kyoto Encyclopedia of Genes and Genomes) terms cell-cycle and signaling. Increasing levels of NF-YAs are observed from low to high CpG island methylator phenotypes (CIMP). We identified 166 genes overexpressed in LUAD cell lines with low NF-YAs/NF-YAl ratios: applying this centroid to TCGA samples faithfully predicted tumors’ isoform ratio. This signature lacks CCAAT in promoters. Finally, progression-free intervals and hazard ratios concurred with the worst prognosis of patients with either a low or high NF-YAs/NF-YAl ratio. In conclusion, global overexpression of NF-YAs is documented in LUAD and is associated with aggressive tumor behavior; however, a similar prognosis is recorded in tumors with high levels of NF-YAl and overexpressed CCAAT-less genes

    Fat-to-blood recirculation of partially dysfunctional PD-1+CD4 Tconv cells is associated with dysglycemia in human obesity

    No full text
    Summary: Obesity is characterized by the accumulation of T cells in insulin-sensitive tissues, including the visceral adipose tissue (VAT), that can interfere with the insulin signaling pathway eventually leading to insulin resistance (IR) and type 2 diabetes. Here, we found that PD-1+CD4 conventional T (Tconv) cells, endowed with a transcriptomic and functional profile of partially dysfunctional cells, are diminished in VAT of obese patients with dysglycemia (OB-Dys), without a concomitant increase in apoptosis. These cells showed enhanced capacity to recirculate into the bloodstream and had a non-restricted TCRβ repertoire divergent from that of normoglycemic obese and lean individuals. PD-1+CD4 Tconv were reduced in the circulation of OB-Dys, exhibited an altered migration potential, and were detected in the liver of patients with non-alcoholic steatohepatitis. The findings suggest a potential role for partially dysfunctional PD-1+CD4 Tconv cells as inter-organ mediators of IR in obese patients with dysglycemic
    corecore