93 research outputs found

    The inositol 1,4,5-trisphosphate receptors

    Get PDF
    Abstract The inosito

    Evaluation of Dimebon in cellular model of Huntington's disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dimebon is an antihistamine compound with a long history of clinical use in Russia. Recently, Dimebon has been proposed to be useful for treating neurodegenerative disorders. It has demonstrated efficacy in phase II Alzheimer's disease (AD) and Huntington's disease (HD) clinical trials. The mechanisms responsible for the beneficial actions of Dimebon in AD and HD remain unclear. It has been suggested that Dimebon may act by blocking NMDA receptors or voltage-gated Ca<sup>2+ </sup>channels and by preventing mitochondrial permeability pore transition.</p> <p>Results</p> <p>We evaluated the effects of Dimebon in experiments with primary striatal neuronal cultures (MSN) from wild type (WT) mice and YAC128 HD transgenic mice. We found that Dimebon acts as an inhibitor of NMDA receptors (IC50 = 10 μM) and voltage-gated calcium channels (IC50 = 50 μM) in WT and YAC128 MSN. We further found that application of 50 μM Dimebon stabilized glutamate-induced Ca<sup>2+ </sup>signals in YAC128 MSN and protected cultured YAC128 MSN from glutamate-induced apoptosis. Lower concentrations of Dimebon (5 μM and 10 μM) did not stabilize glutamate-induced Ca<sup>2+ </sup>signals and did not exert neuroprotective effects in experiments with YAC128 MSN. Evaluation of Dimebon against a set of biochemical targets indicated that Dimebon inhibits α-Adrenergic receptors (α<sub>1A</sub>, α<sub>1B</sub>, α<sub>1D</sub>, and α<sub>2A</sub>), Histamine H<sub>1 </sub>and H<sub>2 </sub>receptors and Serotonin 5-HT<sub>2c</sub>, 5-HT<sub>5A</sub>, 5-HT<sub>6 </sub>receptors with high affinity. Dimebon also had significant effect on a number of additional receptors.</p> <p>Conclusion</p> <p>Our results suggest that Ca<sup>2+ </sup>and mitochondria stabilizing effects may, in part, be responsible for beneficial clinical effects of Dimebon. However, the high concentrations of Dimebon required to achieve Ca<sup>2+ </sup>stabilizing and neuroprotective effects in our <it>in vitro </it>studies (50 μM) indicate that properties of Dimebon as cognitive enhancer are most likely due to potent inhibition of H1 histamine receptors. It is also possible that Dimebon acts on novel high affinity targets not present in cultured MSN preparation. Unbiased evaluation of Dimebon against a set of biochemical targets indicated that Dimebon efficiently inhibited a number of additional receptors. Potential interactions with these receptors need to be considered in interpretation of results obtained with Dimebon in clinical trials.</p

    Tetrabenazine is neuroprotective in Huntington's disease mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Huntington's disease (HD) is a neurodegenerative disorder caused by a polyglutamine (polyQ) expansion in Huntingtin protein (Htt). PolyQ expansion in Httexp causes selective degeneration of striatal medium spiny neurons (MSN) in HD patients. A number of previous studies suggested that dopamine signaling plays an important role in HD pathogenesis. A specific inhibitor of vesicular monoamine transporter (VMAT2) tetrabenazine (TBZ) has been recently approved by Food and Drug Administration for treatment of HD patients in the USA. TBZ acts by reducing dopaminergic input to the striatum.</p> <p>Results</p> <p>In previous studies we demonstrated that long-term feeding with TBZ (combined with L-Dopa) alleviated the motor deficits and reduced the striatal neuronal loss in the yeast artificial chromosome transgenic mouse model of HD (YAC128 mice). To further investigate a potential beneficial effects of TBZ for HD treatment, we here repeated TBZ evaluation in YAC128 mice starting TBZ treatment at 2 months of age ("early" TBZ group) and at 6 months of age ("late" TBZ group). In agreement with our previous studies, we found that both "early" and "late" TBZ treatments alleviated motor deficits and reduced striatal cell loss in YAC128 mice. In addition, we have been able to recapitulate and quantify depression-like symptoms in TBZ-treated mice, reminiscent of common side effects observed in HD patients taking TBZ.</p> <p>Conclusions</p> <p>Our results further support therapeutic value of TBZ for treatment of HD but also highlight the need to develop more specific dopamine antagonists which are less prone to side-effects.</p

    Dantrolene is neuroprotective in Huntington's disease transgenic mouse model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a polyglutamine expansion in the Huntingtin protein which results in the selective degeneration of striatal medium spiny neurons (MSNs). Our group has previously demonstrated that calcium (Ca<sup>2+</sup>) signaling is abnormal in MSNs from the yeast artificial chromosome transgenic mouse model of HD (YAC128). Moreover, we demonstrated that deranged intracellular Ca<sup>2+ </sup>signaling sensitizes YAC128 MSNs to glutamate-induced excitotoxicity when compared to wild type (WT) MSNs. In previous studies we also observed abnormal neuronal Ca<sup>2+ </sup>signaling in neurons from spinocerebellar ataxia 2 (SCA2) and spinocerebellar ataxia 3 (SCA3) mouse models and demonstrated that treatment with dantrolene, a ryanodine receptor antagonist and clinically relevant Ca<sup>2+ </sup>signaling stabilizer, was neuroprotective in experiments with these mouse models. The aim of the current study was to evaluate potential beneficial effects of dantrolene in experiments with YAC128 HD mouse model.</p> <p>Results</p> <p>The application of caffeine and glutamate resulted in increased Ca<sup>2+ </sup>release from intracellular stores in YAC128 MSN cultures when compared to WT MSN cultures. Pre-treatment with dantrolene protected YAC128 MSNs from glutamate excitotoxicty, with an effective concentration of 100 nM and above. Feeding dantrolene (5 mg/kg) twice a week to YAC128 mice between 2 months and 11.5 months of age resulted in significantly improved performance in the beam-walking and gait-walking assays. Neuropathological analysis revealed that long-term dantrolene feeding to YAC128 mice significantly reduced the loss of NeuN-positive striatal neurons and reduced formation of Htt<sup>exp </sup>nuclear aggregates.</p> <p>Conclusions</p> <p>Our results support the hypothesis that deranged Ca<sup>2+ </sup>signaling plays an important role in HD pathology. Our data also implicate the RyanRs as a potential therapeutic target for the treatment of HD and demonstrate that RyanR inhibitors and Ca<sup>2+ </sup>signaling stabilizers such as dantrolene should be considered as potential therapeutics for the treatment of HD and other polyQ-expansion disorders.</p

    Elucidating a normal function of huntingtin by functional and microarray analysis of huntingtin-null mouse embryonic fibroblasts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The polyglutamine expansion in huntingtin (Htt) protein is a cause of Huntington's disease (HD). Htt is an essential gene as deletion of the mouse Htt gene homolog (<it>Hdh</it>) is embryonic lethal in mice. Therefore, in addition to elucidating the mechanisms responsible for polyQ-mediated pathology, it is also important to understand the normal function of Htt protein for both basic biology and for HD.</p> <p>Results</p> <p>To systematically search for a mouse Htt function, we took advantage of the <it>Hdh </it>+/- and <it>Hdh</it>-floxed mice and generated four mouse embryonic fibroblast (MEF) cells lines which contain a single copy of the <it>Hdh </it>gene (<it>Hdh</it>-HET) and four MEF lines in which the <it>Hdh </it>gene was deleted (<it>Hdh</it>-KO). The function of Htt in calcium (Ca<sup>2+</sup>) signaling was analyzed in Ca<sup>2+ </sup>imaging experiments with generated cell lines. We found that the cytoplasmic Ca<sup>2+ </sup>spikes resulting from the activation of inositol 1,4,5-trisphosphate receptor (InsP<sub>3</sub>R) and the ensuing mitochondrial Ca<sup>2+ </sup>signals were suppressed in the <it>Hdh</it>-KO cells when compared to <it>Hdh</it>-HET cells. Furthermore, in experiments with permeabilized cells we found that the InsP<sub>3</sub>-sensitivity of Ca<sup>2+ </sup>mobilization from endoplasmic reticulum was reduced in <it>Hdh</it>-KO cells. These results indicated that Htt plays an important role in modulating InsP<sub>3</sub>R-mediated Ca<sup>2+ </sup>signaling. To further evaluate function of Htt, we performed genome-wide transcription profiling of generated <it>Hdh</it>-HET and <it>Hdh</it>-KO cells by microarray. Our results revealed that 106 unique transcripts were downregulated by more than two-fold with p < 0.05 and 173 unique transcripts were upregulated at least two-fold with p < 0.05 in <it>Hdh</it>-KO cells when compared to <it>Hdh</it>-HET cells. The microarray results were confirmed by quantitative real-time PCR for a number of affected transcripts. Several signaling pathways affected by <it>Hdh </it>gene deletion were identified from annotation of the microarray results.</p> <p>Conclusion</p> <p>Functional analysis of generated Htt-null MEF cells revealed that Htt plays a direct role in Ca<sup>2+ </sup>signaling by modulating InsP<sub>3</sub>R sensitivity to InsP<sub>3</sub>. The genome-wide transcriptional profiling of Htt-null cells yielded novel and unique information about the normal function of Htt in cells, which may contribute to our understanding and treatment of HD.</p

    Mutational re-modeling of di-aspartyl intramembrane proteases: uncoupling physiologically-relevant activities from those associated with Alzheimer\u27s disease

    Get PDF
    The intramembrane proteolytic activities of presenilins (PSEN1/PS1 and PSEN2/PS2) underlie production of beta-amyloid, the key process in Alzheimer\u27s disease (AD). Dysregulation of presenilin-mediated signaling is linked to cancers. Inhibition of the gamma-cleavage activities of PSENs that produce Abeta, but not the epsilon-like cleavage activity that release physiologically essential transcription activators, is a potential approach for the development of rational therapies for AD. In order to identify whether different activities of PSEN1 can be dissociated, we designed multiple mutations in the evolutionary conserved sites of PSEN1. We tested them in vitro and in vivo assays and compared their activities with mutant isoforms of presenilin-related intramembrane di-aspartyl protease (IMPAS1 (IMP1)/signal peptide peptidase (SPP)). PSEN1 auto-cleavage was more resistant to the mutation remodeling than the epsilon-like proteolysis. PSEN1 with a G382A or a P433A mutation in evolutionary invariant sites retains functionally important APP epsilon- and Notch S3- cleavage activities, but G382A inhibits APP gamma-cleavage and Abeta production and a P433A elevates Abeta. The G382A variant cannot restore the normal cellular ER Ca(2+) leak in PSEN1/PSEN2 double knockout cells, but efficiently rescues the loss-of-function (Egl) phenotype of presenilin in C. elegans. We found that, unlike in PSEN1 knockout cells, endoplasmic reticulum (ER) Ca(2+) leak is not changed in the absence of IMP1/SPP. IMP1/SPP with the analogous mutations retained efficiency in cleavage of transmembrane substrates and rescued the lethality of Ce-imp-2 knockouts. In summary, our data show that mutations near the active catalytic sites of intramembrane di-aspartyl proteases have different consequences on proteolytic and signaling functions

    Acute dosing of latrepirdine (Dimebon), a possible Alzheimer therapeutic, elevates extracellular amyloid-beta levels in vitro and in vivo.

    Get PDF
    BACKGROUND: Recent reports suggest that latrepirdine (Dimebon, dimebolin), a retired Russian antihistamine, improves cognitive function in aged rodents and in patients with mild to moderate Alzheimer's disease (AD). However, the mechanism(s) underlying this benefit remain elusive. AD is characterized by extracellular accumulation of the amyloid-beta (Abeta) peptide in the brain, and Abeta-lowering drugs are currently among the most popular anti-amyloid agents under development for the treatment of AD. In the current study, we assessed the effect of acute dosing of latrepirdine on levels of extracellular Abeta using in vitro and in vivo experimental systems. RESULTS: We evaluated extracellular levels of Abeta in three experimental systems, under basal conditions and after treatment with latrepirdine. Mouse N2a neuroblastoma cells overexpressing Swedish APP were incubated for 6 hr in the presence of either vehicle or vehicle + latrepirdine (500pM-5 muM). Synaptoneurosomes were isolated from TgCRND8 mutant APP-overexpressing transgenic mice and incubated for 0 to 10 min in the absence or presence of latrepirdine (1 muM or 10 muM). Drug-naïve Tg2576 Swedish mutant APP overexpressing transgenic mice received a single intraperitoneal injection of either vehicle or vehicle + latrepirdine (3.5 mg/kg). Picomolar to nanomolar concentrations of acutely administered latrepirdine increased the extracellular concentration of Abeta in the conditioned media from Swedish mutant APP-overexpressing N2a cells by up to 64% (p = 0.01), while a clinically relevant acute dose of latrepirdine administered i.p. led to an increase in the interstitial fluid of freely moving APP transgenic mice by up to 40% (p = 0.01). Reconstitution of membrane protein trafficking and processing is frequently inefficient, and, consistent with this interpretation, latrepirdine treatment of isolated TgCRND8 synaptoneurosomes involved higher concentrations of drug (1-10 muM) and led to more modest increases in extracellular Abeta(x-42 )levels (+10%; p = 0.001); of note, however, was the observation that extracellular Abeta(x-40 )levels did not change. CONCLUSIONS: Here, we report the surprising association of acute latrepirdine dosing with elevated levels of extracellular Abeta as measured in three independent neuron-related or neuron-derived systems, including the hippocampus of freely moving Tg2576 mice. Given the reported association of chronic latrepirdine treatment with improvement in cognitive function, the effects of chronic latrepirdine treatment on extracellular Abeta levels must now be determined.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
    corecore