67 research outputs found
Recommended from our members
Space reactor fuel element testing in upgraded TREAT
The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. initial results suggest that full-scale PBR, elements could be tested at an average energy deposition of {approximately}60--80 MW-s/L in the current TREAT reactor. If the TREAT reactor was upgraded to include fuel elements with a higher temperature limit, average energy deposition of {approximately}100 MW/L may be achievable
Recommended from our members
Parametric studies on the load-deflection characteristics of hydraulic snubbers
Hydraulic snubbers are extensively used in the nuclear power industry for supporting high energy piping systems subjected to dynamic loadings. These devices allow the piping system to displace freely under slowly applied loads, but lock up under sudden excitations. This paper presents the governing differential equations describing the hydro-mechanical mechanisms of a typical snubber. A finite difference computer code, SNUBER, was developed to solve these equations. Using the code, the load deflection characteristics of the unit were developed for a range of parameters of interest. The parameters included leakage orifice area, initial piston location, eyebolt clearance and reservoir pressures. The results include the load deflection characteristics for various combinations of the controlling parameters and some chamber pressure time history profiles. It is intended that the nonlinear characteristic of the snubbers be incorporated into a structural dynamic analysis program to allow prediction of the overall response of nuclear piping supported by these devices and subjected to a variety of loadings
Recommended from our members
Piping benchmark problems for the Westinghouse AP600 Standardized Plant
To satisfy the need for verification of the computer programs and modeling techniques that will be used to perform the final piping analyses for the Westinghouse AP600 Standardized Plant, three benchmark problems were developed. The problems are representative piping systems subjected to representative dynamic loads with solutions developed using the methods being proposed for analysis for the AP600 standard design. It will be required that the combined license licensees demonstrate that their solutions to these problems are in agreement with the benchmark problem set
Particle Diffusion and Acceleration by Shock Wave in Magnetized Filamentary Turbulence
We expand the off-resonant scattering theory for particle diffusion in
magnetized current filaments that can be typically compared to astrophysical
jets, including active galactic nucleus jets. In a high plasma beta region
where the directional bulk flow is a free-energy source for establishing
turbulent magnetic fields via current filamentation instabilities, a novel
version of quasi-linear theory to describe the diffusion of test particles is
proposed. The theory relies on the proviso that the injected energetic
particles are not trapped in the small-scale structure of magnetic fields
wrapping around and permeating a filament but deflected by the filaments, to
open a new regime of the energy hierarchy mediated by a transition compared to
the particle injection. The diffusion coefficient derived from a quasi-linear
type equation is applied to estimating the timescale for the stochastic
acceleration of particles by the shock wave propagating through the jet. The
generic scalings of the achievable highest energy of an accelerated ion and
electron, as well as of the characteristic time for conceivable energy
restrictions, are systematically presented. We also discuss a feasible method
of verifying the theoretical predictions. The strong, anisotropic turbulence
reflecting cosmic filaments might be the key to the problem of the acceleration
mechanism of the highest energy cosmic rays exceeding 100 EeV (10^{20} eV),
detected in recent air shower experiments.Comment: 39 pages, 2 figures, accepted for publication in Ap
Tissue- and sex-specific small RNAomes reveal sex differences in response to the environment.
RNA interference (RNAi) related pathways are essential for germline development and fertility in metazoa and can contribute to inter- and trans-generational inheritance. In the nematode Caenorhabditis elegans, environmental double-stranded RNA provided by feeding can lead to heritable changes in phenotype and gene expression. Notably, transmission efficiency differs between the male and female germline, yet the underlying mechanisms remain elusive. Here we use high-throughput sequencing of dissected gonads to quantify sex-specific endogenous piRNAs, miRNAs and siRNAs in the C. elegans germline and the somatic gonad. We identify genes with exceptionally high levels of secondary 22G RNAs that are associated with low mRNA expression, a signature compatible with silencing. We further demonstrate that contrary to the hermaphrodite germline, the male germline, but not male soma, is resistant to environmental RNAi triggers provided by feeding, in line with previous work. This sex-difference in silencing efficacy is associated with lower levels of gonadal RNAi amplification products. Moreover, this tissue- and sex-specific RNAi resistance is regulated by the germline, since mutant males with a feminized germline are RNAi sensitive. This study provides important sex- and tissue-specific expression data of miRNA, piRNA and siRNA as well as mechanistic insights into sex-differences of gene regulation in response to environmental cues
Reading tea leaves worldwide: Decoupled drivers of initial litter decomposition mass‐loss rate and stabilization
The breakdown of plant material fuels soil functioning and biodiversity. Currently, process understanding of global decomposition patterns and the drivers of such patterns are hampered by the lack of coherent large-scale datasets. We buried
36,000 individual litterbags (tea bags) worldwide and found an overall negative correlation between initial mass-loss rates and stabilization factors of plant-derived carbon, using the Tea Bag Index (TBI). The stabilization factor quantifies the degree to which easy-to-
degrade components accumulate during early-stage decomposition (e.g. by environmental limitations). However, agriculture and an interaction between moisture and temperature led to a decoupling between initial mass-loss rates and stabilization, notably in colder locations. Using TBI improved mass-loss estimates of natural litter compared to models that ignored stabilization. Ignoring the transformation of dead plant material to more recalcitrant substances during early-stage decomposition, and the environmental control of this transformation, could overestimate carbon losses during early decomposition in carbon cycle models
Reading tea leaves worldwide: Decoupled drivers of initial litter decomposition mass‐loss rate and stabilization
The breakdown of plant material fuels soil functioning and biodiversity. Currently, process understanding of global decomposition patterns and the drivers of such patterns are hampered by the lack of coherent large-scale datasets. We buried 36,000 individual litterbags (tea bags) worldwide and found an overall negative correlation between initial mass-loss rates and stabilization factors of plant-derived carbon, using the Tea Bag Index (TBI). The stabilization factor quantifies the degree to which easy-to-degrade components accumulate during early-stage decomposition (e.g. by environmental limitations). However, agriculture and an interaction between moisture and temperature led to a decoupling between initial mass-loss rates and stabilization, notably in colder locations. Using TBI improved mass-loss estimates of natural litter compared to models that ignored stabilization. Ignoring the transformation of dead plant material to more recalcitrant substances during early-stage decomposition, and the environmental control of this transformation, could overestimate carbon losses during early decomposition in carbon cycle models
Recommended from our members
Reading tea leaves worldwide: decoupled drivers of initial litter decomposition mass-loss rate and stabilisation
The breakdown of plant material fuels soil functioning and biodiversity. Currently, process understanding of global decomposition patterns and the drivers of such patterns are hampered by the lack of coherent large-scale datasets. We buried 36,000 individual litterbags (tea bags) worldwide and found an overall negative correlation between initial mass-loss rates and stabilization factors of plant-derived carbon, using the Tea Bag Index (TBI). The stabilization factor quantifies the degree to which easy-to-degrade components accumulate during early-stage decomposition (e.g. by environmental limitations). However, agriculture and an interaction between moisture and temperature led to a decoupling between initial mass-loss rates and stabilization, notably in colder locations. Using TBI improved mass-loss estimates of natural litter compared to models that ignored stabilization. Ignoring the transformation of dead plant material to more recalcitrant substances during early-stage decomposition, and the environmental control of this transformation, could overestimate carbon losses during early decomposition in carbon cycle models
Reading tea leaves worldwide: decoupled drivers of initial litter decomposition mass‐loss rate and stabilization
The breakdown of plant material fuels soil functioning and biodiversity. Currently, process understanding of global decomposition patterns and the drivers of such patterns are hampered by the lack of coherent large‐scale datasets. We buried 36,000 individual litterbags (tea bags) worldwide and found an overall negative correlation between initial mass‐loss rates and stabilization factors of plant‐derived carbon, using the Tea Bag Index (TBI). The stabilization factor quantifies the degree to which easy‐to‐degrade components accumulate during early‐stage decomposition (e.g. by environmental limitations). However, agriculture and an interaction between moisture and temperature led to a decoupling between initial mass‐loss rates and stabilization, notably in colder locations. Using TBI improved mass‐loss estimates of natural litter compared to models that ignored stabilization. Ignoring the transformation of dead plant material to more recalcitrant substances during early‐stage decomposition, and the environmental control of this transformation, could overestimate carbon losses during early decomposition in carbon cycle models
Recommended from our members
IMPLEMENTATION OF SEISMIC STOPS IN PIPING SYSTEMS.
Commonwealth Edison has submitted a request to NRC to replace the snubbers in the Reactor Coolant Bypass Line of Byron Station -Unit 2 with gapped pipe supports. The specific supports intended for use are commercial units designated ''Seismic Stops'' manufactured by Robert L. Cloud Associates, Inc. (RLCA). These devices have the physical appearance of snubbers and are essentially spring supports incorporating clearance gaps sized for the Byron Station application. Although the devices have a nonlinear stiffness characteristic, their design adequacy is demonstrated through the use of a proprietary linear elastic piping analysis code ''GAPPIPE'' developed by RLCA. The code essentially has all the capabilities of a conventional piping analysis code while including an equivalent linearization technique to process the nonlinear spring elements. Brookhaven National Laboratory (BNL) has assisted the NRC staff in its evaluation of the RLCA implementation of the equivalent linearization technique and the GAPPIPE code. Towards this end, BNL performed a detailed review of the theoretical basis for the method, an independent evaluation of the Byron piping using the nonlinear time history capability of the ANSYS computer code and by result comparisons to the RLCA developed results, an assessment of the adequacy of the response estimates developed with GAPPIPE. Associated studies included efforts to verify the ANSYS analysis results and the development of bounding calculations for the Byron Piping using linear response spectrum methods
- …