1,951 research outputs found

    Quasinormal modes of a black hole with a cloud of strings in Einstein-Gauss-Bonnet gravity

    Full text link
    The quasinormal modes for a scalar field in the background spacetime corresponding to a black hole, with a cloud of strings, in Einstein-Gauss-Bonnet gravity, and the tensor quasinormal modes corresponding to perturbations in such spacetime, were both calculated using the WKB approximation. In the obtained results we emphasize the role played by the parameter associated with the string cloud, comparing them with the results already obtained for the Boulware-Deser metric. We also study how the Gauss-Bonnet correction to general relativity affects the results for the quasinormal modes, comparing them with the same background in general relativity.Comment: 15 pages, 7 figures; To appear in IJMP

    Vacuum polarization by topological defects in de Sitter spacetime

    Full text link
    In this paper we investigate the vacuum polarization effects associated with a massive quantum scalar field in de Sitter spacetime in the presence of gravitational topological defects. Specifically we calculate the vacuum expectation value of the field square, . Because this investigation has been developed in a pure de Sitter space, here we are mainly interested on the effects induced by the presence of the defects.Comment: Talk presented at the 1st. Mediterranean Conference on Classical and Quantum Gravity (MCCQG

    Tsallis holographic dark energy in the Brans-Dicke cosmology

    Full text link
    Using the Tsallis generalized entropy, holographic hypothesis and also considering the Hubble horizon as the IR cutoff, we build a holographic model for dark energy and study its cosmological consequences in the Brans-Dicke framework. At first, we focus on a non-interacting universe, and thereinafter, we study the results of considering a sign-changeable interaction between the dark sectors of the cosmos. Our investigations show that, compared with the flat case, the power and freedom of the model in describing the cosmic evolution is significantly increased in the presence of the curvature. The stability analysis also indicates that, independent of the universe curvature, both the interacting and non-interacting cases are classically unstable. In fact, both the classical stability criterion and an acceptable behavior for the cosmos quantities, including the deceleration and density parameters as well as the equation of state, are not simultaneously obtainable.Comment: Accepted version, Eur. Phys. J. C (2018

    Global aspects of gravitomagnetism

    Full text link
    We consider global properties of gravitomagnetism by investigating the gravitomagnetic field of a rotating cosmic string. We show that although the gravitomagnetic field produced by such a configuration of matter vanishes locally, it can be detected globally. In this context we discuss the gravitational analogue of the Aharonov-Bohm effect.Comment: 10 pages - Typeset using REVTE

    Vacuum Polarization for a Massless Spin-1/2 Field in the Global Monopole Spacetime at Nonzero Temperature

    Get PDF
    In this paper we present the effects produced by the temperature in the renormalized vacuum expectation value of the zero-zero component of the energy-momentum tensor associated with massless left-handed spinor field in the pointlike global monopole spacetime. In order to develop this calculation we had to obtain the Euclidean thermal Green function in this background. Because the expression obtained for the thermal energy density cannot be expressed in a closed form, its explicit dependence on the temperature is not completely evident. So, in order to obtain concrete information about its thermal behavior, we develop a numerical analysis of our result in the high-temperature limit for specific values of the parameter α\alpha which codify the presence of the monopole.Comment: 22 pages, LaTex format, 5 figure

    Vacuum Polarization by a Magnetic Flux Tube at Finite Temperature in the Cosmic String Spacetime

    Full text link
    In this paper we analyse the effect produced by the temperature in the vacuum polarization associated with charged massless scalar field in the presence of magnetic flux tube in the cosmic string spacetime. Three different configurations of magnetic fields are taken into account: (i)(i) a homogeneous field inside the tube, (ii)(ii) a field proportional to 1/r1/r and (iii)(iii) a cylindrical shell with δ\delta-function. In these three cases, the axis of the infinitely long tube of radius RR coincides with the cosmic string. Because the complexity of this analysis in the region inside the tube, we consider the thermal effect in the region outside. In order to develop this analysis, we construct the thermal Green function associated with this system for the three above mentioned situations considering points in the region outside the tube. We explicitly calculate in the high-temperature limit, the thermal average of the field square and the energy-momentum tensor.Comment: 16 pages, 1 figur

    Self-energy and Self-force in the Space-time of a Thick Cosmic String

    Get PDF
    We calculate the self-energy and self-force for an electrically charged particle at rest in the background of Gott-Hiscock cosmic string space-time. We found the general expression for the self-energy which is expressed in terms of the SS matrix of the scattering problem. The self-energy continuously falls down outward from the string's center with maximum at the origin of the string. The self-force is repulsive for an arbitrary position of the particle. It tends to zero in the string's center and also far from the string and it has a maximum value at the string's surface. The plots of the numerical calculations of the self-energy and self-force are shown.Comment: 15 pages, 4 Postscript figures, ReVTe
    • …
    corecore