1,597 research outputs found

    Self-Forces on Electric and Magnetic Linear Sources in the Space-Time of a Cosmic String

    Get PDF
    In this paper we calculate the magnetic and electric self-forces, induced by the conical structure of a cosmic string space-time, on a long straight wire which presents either a constant current or a linear charge density. We also show how these self-forces are related by a Lorentz tranformation and, in this way, explain what two different inertial observers detect in their respective frames.Comment: 10 pages, LaTeX, to be published in Phys. Rev. D

    Self-similar magnetoresistance of Fibonacci ultrathin magnetic films

    Full text link
    We study numerically the magnetic properties (magnetization and magnetoresistance) of ultra-thin magnetic films (Fe/Cr) grown following the Fibonacci sequence. We use a phenomenological model which includes Zeeman, cubic anisotropy, bilinear and biquadratic exchange energies. Our physical parameters are based on experimental data recently reported, which contain biquadratic exchange coupling with magnitude comparable to the bilinear exchange coupling. When biquadratic exchange coupling is sufficiently large a striking self-similar pattern emerges.Comment: 5 pages, 5 EPS figures, REVTeX, accepted for publication in Phys. Rev.

    Non-relativistic quantum systems on topological defects space-times

    Get PDF
    We study the behavior of non-relativistic quantum particles interacting with different potentials in the space-times generated by a cosmic string and a global monopole. We find the energy spectra in the presence of these topological defects and show how they differ from their free space-time values.Comment: 17 pages, LATEX fil

    Perfil tecnológico da producão de flores na região do Macico de Baturité - Ceará.

    Get PDF
    Caracterizacao da regiao produtora; exploracao da propiedade e caracteristicas do produtor; caracteristicas do cultivo; principais especies cultivadas; consideracoes finais e sujestoes.bitstream/CNPAT-2010/4305/1/Dc-022.pd

    Gravitation: Global Formulation and Quantum Effects

    Full text link
    A nonintegrable phase-factor global approach to gravitation is developed by using the similarity of teleparallel gravity with electromagnetism. The phase shifts of both the COW and the gravitational Aharonov-Bohm effects are obtained. It is then shown, by considering a simple slit experiment, that in the classical limit the global approach yields the same result as the gravitational Lorentz force equation of teleparallel gravity. It represents, therefore, the quantum mechanical version of the classical description provided by the gravitational Lorentz force equation. As teleparallel gravity can be formulated independently of the equivalence principle, it will consequently require no generalization of this principle at the quantum level.Comment: Latex (IOP style), 14 pages, 3 figures. To appear in Classical and Quantum Gravit
    corecore