18 research outputs found

    Improvement of Sidestream Dark Field Imaging with an Image Acquisition Stabilizer

    Get PDF
    Background: In the present study we developed, evaluated in volunteers, and clinically validated an image acquisition stabilizer (IAS) for Sidestream Dark Field (SDF) imaging.Methods: The IAS is a stainless steel sterilizable ring which fits around the SDF probe tip. The IAS creates adhesion to the imaged tissue by application of negative pressure. The effects of the IAS on the sublingual microcirculatory flow velocities, the force required to induce pressure artifacts (PA), the time to acquire a stable image, and the duration of stable imaging were assessed in healthy volunteers. To demonstrate the clinical applicability of the SDF setup in combination with the IAS, simultaneous bilateral sublingual imaging of the microcirculation were performed during a lung recruitment maneuver (LRM) in mechanically ventilated critically ill patients. One SDF device was operated handheld; the second was fitted with the IAS and held in position by a mechanic arm. Lateral drift, number of losses of image stability and duration of stable imaging of the two methods were compared.Results: Five healthy volunteers were studied. The IAS did not affect microcirculatory flow velocities. A significantly greater force had to applied onto the tissue to induced PA with compared to without IAS (0.25 ± 0.15 N without vs. 0.62 ± 0.05 N with the IAS, p < 0.001). The IAS ensured an increased duration of a stable image sequence (8 ± 2 s without vs. 42 ± 8 s with the IAS, p < 0.001). The time required to obtain a stable image sequence was similar with and without the IAS. In eight mechanically ventilated patients undergoing a LRM the use of the IAS resulted in a significantly reduced image drifting and enabled the acquisition of significantly longer stable image sequences (24 ± 5 s without vs. 67 ± 14 s with the IAS, p = 0.006).Conclusions: The present study has validated the use of an IAS for improvement of SDF imaging by demonstrating that the IAS did not affect microcirculatory perfusion in the microscopic field of view. The IAS improved both axial and lateral SDF image stability and thereby increased the critical force required to induce pressure artifacts. The IAS ensured a significantly increased duration of maintaining a stable image sequence

    Sidestream Dark Field (SDF) imaging: a novel stroboscopic LED ring-based imaging modality for clinical assessment of the microcirculation

    No full text
    Sidestream Dark Field (SDF) imaging, a stroboscopic LED ring-based imaging modality, is introduced for clinical observation of the microcirculation. SDF imaging is validated by comparison to Orthogonal Polarization Spectral imaging. Nailfold capillary diameters and red blood cell velocities were measured using both techniques and equal quantitative results were obtained. An image quality system was developed to quantitatively compare the quality of sublingually-acquired microcirculatory images using OPS and SDF imaging. Venular contrast, sharpness, and quality were shown to be comparable for OPS and SDF imaging. However, capillary contrast and quality were shown to be significantly higher using SDF imaging. Venular granularity, in addition, was more clearly observable using SDF imagin

    Red blood cell storage increases hypoxia-induced nitric oxide bioavailability and methemoglobin formation in vitro and in vivo

    No full text
    In this study we investigated whether storage of red blood cells (RBCs) leads to alterations in nitrite reductase activity, hence in altered hypoxia-induced nitric oxide (NO) bioavailability and methemoglobin formation. Hypoxia-induced NO bioavailability and methemoglobin formation were measured in vitro after nitrite administration to fresh ( <1 week of storage) and aged (5-6 weeks of storage) human RBC units and in blood samples of hemodiluted rats subjected to hypoxic ventilation after transfusion with fresh or aged human RBCs. In vitro, NO and methemoglobin levels 10 minutes after nitrite administration were lower in the fresh RBC samples compared to the aged RBC samples (p = 0.026 and p = 0.022, respectively). In vivo, NO bioavailability was also significantly lower in the rats receiving fresh RBCs compared to the group receiving aged RBCs (p = 0.003). In line with NO bioavailability, methemoglobin levels were higher, albeit not significantly, in the group receiving aged RBCs compared to in the group receiving fresh RBCs (p = 0.154). The difference in methemoglobin formation after nitrite administration between fresh and aged RBCs was only present under deoxygenated conditions and not under oxygenated conditions. There were no differences in methemoglobin reductase activity between fresh and aged RBCs. Storage of RBCs leads to an increased rate of hypoxia-induced nitrite reduction to NO and this is associated with increased methemoglobin formation. The increased methemoglobin formation and consequent decrease in oxygen delivery capacity might contribute to the storage-related impairment of aged RBCs to oxygenate the microcirculatio
    corecore