50 research outputs found

    A global bibliometric perspective on soil erosion modelling

    Get PDF
    Systematic bibliometric investigations are useful to evaluate and compare the scientific impact of journal papers, book chapters and conference proceedings. Such studies allow the detection of emerging research topics, the analyses of cooperation networks, and the collection of in-depth insights into a specific research topic. In the presented work, we carried out a bibliometric study in order to obtain an in-depth knowledge on soil erosion modelling applications worldwide. As a starting point, we used the soil erosion modelling meta-analysis data collection generated by the authors of this abstract in a joint community effort. This database contains meta-information of more than 3,000 documents published between 1994 and 2018 that are indexed in the SCOPUS database. The documents were reviewed and database entries verified. The database contains various types of meta-information about the modelling studies (e.g., model used, study area, input data, calibration, etc.). The bibliometric information was also included in the database (e.g., number of citations, type of publication, Scopus category, etc.). We investigated differences among publication types and differences between papers published in journals that are part of various Scopus categories. Moreover, relationships between publication CiteScore, number of authors, and number of citations were analyzed. A boosted regression tree model was used to detect the relative impact of the selected meta-information such as erosion model used, spatial modelling scale, study period, field activity on the total number of citations. Detailed investigation of the most cited papers was also conducted. The VOSviewer software was used to analyze citations, cocitations, bibliographic coupling, and co-authorship networks of the database entries. Our bibliometric investigations demonstrated that journal publications, on average, receive more citations than book series or conference proceedings. There were differences among the erosion models used, and some specific models such as the WaTEM/SEDEM model, on average, receive more citations than other models (e.g., USLE). It should also be noted that self-citation rates in case of most frequently used models were similar. Global studies, on average, receive more citations than studies dealing with plot, regional, or national scales. According to the boosted regression tree model, model calibration, validation, or field activity do not have significant impact on the obtained publication citations. Co-citation investigation revealed some interesting patterns. Our results also indicate that papers about soil erosion modeling also attract citations from different fields and better international cooperation is needed to advance this field of research with regard to its visibility and impact on human societies

    A large sample analysis of European rivers on seasonal river flow correlation and its physical drivers

    Get PDF
    The geophysical and hydrological processes governing river flow formation exhibit persistence at several timescales, which may manifest itself with the presence of positive seasonal correlation of streamflow at several different time lags. We investigate here how persistence propagates along subsequent seasons and affects low and high flows. We define the high-flow season (HFS) and the low-flow season (LFS) as the 3-month and the 1-month periods which usually exhibit the higher and lower river flows, respectively. A dataset of 224 rivers from six European countries spanning more than 50 years of daily flow data is exploited. We compute the lagged seasonal correlation between selected river flow signatures, in HFS and LFS, and the average river flow in the antecedent months. Signatures are peak and average river flow for HFS and LFS, respectively. We investigate the links between seasonal streamflow correlation and various physiographic catchment characteristics and hydro-climatic properties. We find persistence to be more intense for LFS signatures than HFS. To exploit the seasonal correlation in the frequency estimation of high and low flows, we fit a bi-variate meta-Gaussian probability distribution to the selected flow signatures and average flow in the antecedent months in order to condition the distribution of high and low flows in the HFS and LFS, respectively, upon river flow observations in the previous months. The benefit of the suggested methodology is demonstrated by updating the frequency distribution of high and low flows one season in advance in a real-world case. Our findings suggest that there is a traceable physical basis for river memory which, in turn, can be statistically assimilated into high- and low-flow frequency estimation to reduce uncertainty and improve predictions for technical purposes

    Brief communication: A first hydrological investigation of extreme August 2023 floods in Slovenia, Europe

    Get PDF
    Extreme floods occurred from 4 to 6 August 2023 in Slovenia causing three casualties and causing total direct and indirect damage, including post-disaster needs according to the Post-Disaster Needs Assessment (PDNA), close to EUR 10 billion. The atypical summer weather conditions combined with the high air and sea temperatures in the Mediterranean and the high soil moisture led to the most extreme flood event in Slovenia in recent decades. The return periods of both daily and sub-daily precipitation extremes and peak discharges reached 250–500 years, and the runoff coefficient of a typical torrential and mostly forested mesoscale catchment was around 0.5. In addition, flooding, soil erosion, mass movements and river sediment transport processes caused major damage to buildings (more than 12 000 houses) and diverse infrastructure.</p

    Quality assessment of cadmium telluride as a detector material for multispectral medical imaging

    Get PDF
    Cadmiumtelluride (CdTe) is a high-Z material with excellent photon radiation absorption properties, making it a promising material to include in radiation detection technologies. However, the brittleness of CdTe crystals as well as their varying concentration of defects necessitate a thorough quality assessment before the complex detector processing procedure. We present our quality assessment of CdTe as a detector material for multispectralmedical imaging, a research which is conducted as part of the Consortium Project Multispectral Photon-counting for Medical Imaging and Beam characterization (MPMIB). The aim of the project is to develop novel CdTe detectors and obtain spectrum-per-pixel information that make the distinction between different radiation types and tissues possible. To evaluate the defect density inside the crystals - which can deteriorate the detector performance - we employ infrared microscopy (IRM). Posterior data analysis allows us to visualise the defect distributions as 3D defect maps. Additionally, we investigate front and backside differences of the material with current-voltage (IV) measurements to determine the preferred surface for the pixelisation of the crystal, and perform test measurements with the prototypes to provide feedback for further processing. We present the different parts of our quality assessment chain and will close with first experimental results obtained with one of our prototype photon-counting detectors in a small tomographic setup.Peer reviewe

    EUSEDcollab: a network of data from European catchments to monitor net soil erosion by water

    Get PDF
    As a network of researchers we release an open-access database (EUSEDcollab) of water discharge and suspended sediment yield time series records collected in small to medium sized catchments in Europe. EUSEDcollab is compiled to overcome the scarcity of open-access data at relevant spatial scales for studies on runoff, soil loss by water erosion and sediment delivery. Multi-source measurement data from numerous researchers and institutions were harmonised into a common time series and metadata structure. Data reuse is facilitated through accompanying metadata descriptors providing background technical information for each monitoring station setup. Across ten European countries, EUSEDcollab covers over 1600 catchment years of data from 245 catchments at event (11 catchments), daily (22 catchments) and monthly (212 catchments) temporal resolution, and is unique in its focus on small to medium catchment drainage areas (median = 43 km(2), min = 0.04 km(2), max = 817 km(2)) with applicability for soil erosion research. We release this database with the aim of uniting people, knowledge and data through the European Union Soil Observatory (EUSO)

    An integrated 1D–2D hydraulic modelling approach to assess the sensitivity of a coastal region to compound flooding hazard under climate change

    Get PDF
    Coastal regions are dynamic areas that often lie at the junction of different natural hazards. Extreme events such as storm surges and high precipitation are significant sources of concern for flood management. As climatic changes and sea-level rise put further pressure on these vulnerable systems, there is a need for a better understanding of the implications of compounding hazards. Recent computational advances in hydraulic modelling offer new opportunities to support decision-making and adaptation. Our research makes use of recently released features in the HEC-RAS version 5.0 software to develop an integrated 1D–2D hydrodynamic model. Using extreme value analysis with the Peaks-Over-Threshold method to define extreme scenarios, the model was applied to the eastern coast of the UK. The sensitivity of the protected wetland known as the Broads to a combination of fluvial, tidal and coastal sources of flooding was assessed, accounting for different rates of twenty-first century sea-level rise up to the year 2100. The 1D–2D approach led to a more detailed representation of inundation in coastal urban areas, while allowing for interactions with more fluvially dominated inland areas to be captured. While flooding was primarily driven by increased sea levels, combined events exacerbated flooded area by 5–40% and average depth by 10–32%, affecting different locations depending on the scenario. The results emphasise the importance of catchment-scale strategies that account for potentially interacting sources of flooding

    Soil erosion modelling: A global review and statistical analysis

    Get PDF
    To gain a better understanding of the global application of soil erosion prediction models, we comprehensivelyreviewed relevant peer-reviewed research literature on soil-erosion modelling published between 1994 and2017. We aimed to identify (i) the processes and models most frequently addressed in the literature, (ii) the re-gions within which models are primarily applied, (iii) the regions which remain unaddressed and why, and (iv)how frequently studies are conducted to validate/evaluate model outcomes relative to measured data. To per-form this task, we combined the collective knowledge of 67 soil-erosion scientists from 25 countries. Theresulting database, named‘Global Applications of Soil Erosion Modelling Tracker (GASEMT)’, includes 3030 indi-vidual modelling records from 126 countries, encompassing all continents (except Antarctica). Out of the 8471articles identified as potentially relevant, we reviewed 1697 appropriate articles and systematically evaluatedand transferred 42 relevant attributes into the database. This GASEMT database provides comprehensive insightsinto the state-of-the-art of soil- erosion models and model applications worldwide. This database intends to sup-port the upcoming country-based United Nations global soil-erosion assessment in addition to helping to informsoil erosion research priorities by building a foundation for future targeted, in-depth analyses. GASEMT is anopen-source database available to the entire user-community to develop research, rectify errors, andmakefutureexpansion

    Soil erosion modelling: A global review and statistical analysis

    Get PDF
    To gain a better understanding of the global application of soil erosion prediction models, we comprehensively reviewed relevant peer-reviewed research literature on soil-erosion modelling published between 1994 and 2017.We aimed to identify (i) the processes and models most frequently addressed in the literature, (ii) the regions within which models are primarily applied, (iii) the regions which remain unaddressed and why, and (iv) how frequently studies are conducted to validate/evaluate model outcomes relative to measured data. To perform this task, we combined the collective knowledge of 67 soil-erosion scientists from 25 countries. The resulting database, named ‘Global Applications of Soil ErosionModelling Tracker (GASEMT)’, includes 3030 individual modelling records from 126 countries, encompassing all continents (except Antarctica). Out of the 8471 articles identified as potentially relevant, we reviewed 1697 appropriate articles and systematically evaluated and transferred 42 relevant attributes into the database. This GASEMT database provides comprehensive insights into the state-of-the-art of soil- erosionmodels and model applicationsworldwide. This database intends to support the upcoming country-based United Nations global soil-erosion assessment in addition to helping to inform soil erosion research priorities by building a foundation for future targeted, in-depth analyses. GASEMT is an open-source database available to the entire user-community to develop research, rectify errors, andmake future expansions

    A first assessment of rainfall erosivity synchrony scale at pan-European scale

    No full text
    Soil loss by water erosion is a major land degradation processes that can locally reduce crop productivity and cause off-site negative effects such as siltation, eutrophication of waterways, flooding and terrestrial and aquatic biodiversity loss. The major driver of water erosion is the erosive power of rainfall. Using the detailed erosive events of the Rainfall Erosivity Database at European Scale (REDES), we study the characteristics and patterns of rainfall erosivity in Europe introducing the Rainfall Erosivity Synchrony Scale (Rsync). Rsync expresses the maximum radius in kilometers around a given meteorological station within which at least half of the other meteorological stations in the database also detect an erosive event. In this study we correlate the Rsync and the annual erosivity with annual number of thunderstorm days, convective and large-scale precipitation and multiple geo-morphological features such as topographic position index and terrain ruggedness index. Our analysis shows an inverse relationship between the Rsync and rainfall erosivity values in Europe. Different spatial patterns of synchrony scale are detected in Europe, which enables us to delineate areas where severe soil erosion can simultaneously occur at larger scales, e.g., large sectors of Italy, Spain, Croatia and Slovenia. Furthermore, we observe a tendency of the Rsync to decrease with convective precipitation, annual number of thunderstorm days and increase with the large-scale precipitation. On the contrary, annual rainfall erosivity increases with convective precipitation and annual number of thunderstorm days and decreases with large-scale precipitation
    corecore