82 research outputs found

    Simultaneous kHz-rate temperature and velocity field measurements in the flow emanating from angled and trenched film cooling holes

    Get PDF
    AbstractTo design more efficient film cooling geometries for gas turbines, non-intrusive measurements of the flow temperature, velocity and derived quantities like the turbulent heat flux are needed in well-defined, generic flow configurations. With this aim we have applied thermographic particle image velocimetry (thermographic PIV) to investigate the flow emanating from angled and trenched cooling holes in a closed-loop optically-accessible wind tunnel facility. BAM:Eu2+ thermographic phosphor particles were seeded into the flow as a tracer. A pulsed high-speed UV laser was used to excite the particles and the luminescence was detected using two high-speed cameras to determine the temperature field by a two-colour ratiometric approach. The velocity field was measured using ordinary high-speed PIV. The simultaneously measured fields were sampled at a rate of 6kHz in a vertical plane through the centreline of the symmetrical single-row cooling holes. The flowrate and temperature of the cooling air and heated main flow were chosen to achieve density and momentum flux ratios of 1.6 and 8 respectively. For these conditions the average and RMS temperature fields show that for ordinary angled holes the jet is detached from the surface. In contrast, the trenched geometry leads to a cooling film attached to the surface. However, time-resolved image sequences show instances where hot air breaks through the cooling film and almost reaches the surface. Similar image sequences for the angled holes show that the detached coolant jet becomes unstable downstream and pockets of cold air are ejected into the main flow. This intermittency may in part explain the observation that the measured turbulent heat flux is oriented towards the cold core, but deviates from the direction of the mean temperature gradient, thereby contradicting the simple gradient diffusion hypothesis commonly used in RANS simulations

    Comparative flame structure investigation of normal and inverse turbulent non-premixed oxy-fuel flames using experimentally recorded and numerically predicted Rayleigh and OH-PLIF signals

    Get PDF
    The structure and characteristics of a turbulent inverse and normal oxy-fuel diffusion flame are investigated. Previous investigations reported in the literature looked at flame characteristics of laminar inverse diffusion flames and their differences to normal diffusion flames. Only few investigations are reported for turbulent inverse diffusion flames and they did not compare the results to the corresponding normal configuration. The present study uses a combined experimental and numerical approach to compare and analyze a turbulent non-premixed inverse oxy-fuel and a corresponding normal flame, both are non-piloted. Measurements were conducted using simultaneously recorded planar Rayleigh scattering and OH-LIF signals. Due to the significant variation of the effective Rayleigh cross section in mixture fraction space and the unknown OH quenching contributions, a comparison of derived quantities such as temperature and OH mole fraction is not possible. Therefore, the Rayleigh and OH-LIF signals were incorporated in the LES flamelet/progress variable approach used here. This allows for a direct comparison of experimentally recorded and numerically predicted Rayleigh and OH-PLIF signals for the flame structure analysis, which includes the joint PDF of both quantities. The two flames are compared in terms of the local flame structure. In addition, differences in the mixing field and especially in the location of turbulent/non-turbulent interface are investigated

    Improvement of planar laser diagnostics by the application of a beam homogenizer

    Get PDF
    For planar laser diagnostics, a most uniform beam profile is highly desirable for two reasons: first, subsequent corrections for an inhomogeneous intensity distribution are time consuming and prevent on-line engineering assessment and second, temporal fluctuations cannot be corrected anyway. However, in general for combustion and flow diagnostics pulsed laser sources are used to achieve a high temporal resolution which typically possess a rather poor beam quality compared to continuously emitting laser sources. And, pulse to pulse fluctuations of the beam profile directly increase the noise in single-shot measurements. In this contribution we show the application of a micro-lens array based beam homogenizer whereby an almost homogeneous illumination of the region of in interest is achieved. This enables the on-line evaluation of the measured data without subsequent corrections. Thus a general advance of laser techniques towards engineering practice is achieved. Additionally, statistical fluctuations of the beam profile are strongly reduced by the homogenizer what directly improves the local standard deviation of the measurement. These benefits are demonstrated by means of planar laser-induced fluorescence (LIF) experiments

    Characterization of a Combined CARS and Interferometric Rayleigh Scattering System

    Get PDF
    This paper describes the characterization of a combined Coherent anti-Stokes Raman Spectroscopy and Interferometric Rayleigh Scattering (CARS-IRS) system by reporting the accuracy and precision of the measurements of temperature, species mole fraction of N2, O2, and H2, and two-components of velocity. A near-adiabatic H2-air Hencken burner flame was used to provide known properties for measurements made with the system. The measurement system is also demonstrated in a small-scale Mach 1.6 H2-air combustion-heated supersonic jet with a co-flow of H2. The system is found to have a precision that is sufficient to resolve fluctuations of flow properties in the mixing layer of the jet

    Hyperprolactinemia in antipsychotic-naive patients with first-episode psychosis

    Get PDF
    Background Hyperprolactinemia is frequent in patients with schizophrenic psychoses. It is usually regarded as an adverse effect of antipsychotics but has recently also been shown in patients without antipsychotic medication. Our objective was to test whether hyperprolactinemia occurs in antipsychotic-naive first-episode patients (FEPs). Method In the framework of the European First Episode Schizophrenia Trial (EUFEST), 249 out of 498 FEPs were eligible for this study, of whom 74 were antipsychotic naive. All patients were investigated regarding their serum prolactin levels with immunoassays standardized against the 3rd International Reference Standard 84/500. Results Twenty-nine (39%) of the 74 antipsychotic-naive patients showed hyperprolactinemia not explained by any other reason, 11 (50%) of 22 women and 18 (35%) of 52 men. Conclusions Hyperprolactinemia may be present in patients with schizophrenic psychoses independent of antipsychotic medication. It might be stress induced. As enhanced prolactin can increase dopamine release through a feedback mechanism, this could contribute to explaining how stress can trigger the outbreak of psychosi

    Genome-wide DNA methylation map of human neutrophils reveals widespread inter-individual epigenetic variation

    Get PDF
    The extent of variation in DNA methylation patterns in healthy individuals is not yet well documented. Identification of inter-individual epigenetic variation is important for understanding phenotypic variation and disease susceptibility. Using neutrophils from a cohort of healthy individuals, we generated base-resolution DNA methylation maps to document inter-individual epigenetic variation. We identified 12851 autosomal inter-individual variably methylated fragments (iVMFs). Gene promoters were the least variable, whereas gene body and upstream regions showed higher variation in DNA methylation. The iVMFs were relatively enriched in repetitive elements compared to non-iVMFs, and were associated with genome regulation and chromatin function elements. Further, variably methylated genes were disproportionately associated with regulation of transcription, responsive function and signal transduction pathways. Transcriptome analysis indicates that iVMF methylation at differentially expressed exons has a positive correlation and local effect on the inclusion of that exon in the mRNA transcript
    corecore