2 research outputs found

    Cannabis sativa L. oil extract affects neuroinflammation, clinical score, and cannabinoid receptor-1 gene expression in C57bl/6 experimental autoimmune encephalomyelitis

    Full text link
    Introduction: Multiple sclerosis (MS) is a degenerative central nervous system disease derived by immune mechanisms, which ultimately results in clinical debilities. Numerous nutraceuticals have been cited to be effective in treatment of central nervous system complications. Objectives: This study investigated the effect of Cannabis sativa L. seed oil on experimental autoimmune encephalomyelitis (EAE). Materials and Methods: Female C57bl/6 mice were assigned randomly into three groups (8 in each). Group-A received no myelin oligodendrocyte glycoprotein (MOG), group B was immunized by MOG and treated with oil, while in group C animals were immunized and treated with normal saline. Clinical scores were recorded every other day throughout the study and after four weeks, all mice were sacrificed and spinal cords were incised for molecular and histopathological evaluations. Results: Significant differences were observed in mean clinical scores between control and experiment groups (P&lt;0.001). Cannabinoid receptor-1 gene expression increased significantly in treatment group (P&lt;0.001). Histopathologic evaluations also showed a significant decrease in overall infiltrated and vacuolated area and immune cells infiltration into the central nervous system in the treatment group (P&lt;0.01). Conclusion: Cannabis sativa L. oil extract administration alleviated inflammation and paralysis in animal model. Therefore, its oil extract might be useful in soothing inflammatory and auto-immune diseases. However, additional research might be required.</jats:p

    microRNAs involved in T-cell development, selection, activation, and hemostasis

    No full text
    MicroRNAs (miRNAs) characterized by small, noncoding RNAs have a fundamental role in the regulation of gene expression at the post-transcriptional level. Additionally, miRNAs have recently been identified as potential regulators of various genes involved in the pathogenesis of the autoimmune and inflammatory disease. So far, the interaction between miRNAs and T lymphocytes in the immune response as a new and significant topic has not been emphasized substantially. The role of miRNAs in different biological processes including apoptosis, immune checkpoints and the activation of immune cells is still unclear. Aberrant miRNA expression profile affects various aspects of T-cell function. Accordingly, in this literature review, we summarized the role of significant miRNAs in T-cell development processes. Consequently, we demonstrated precise mechanisms that candidate miRNAs interfere in Immune response mediated by different types of T cells. We believe that a good understanding of the interaction between miRNAs and immune response contributes to the new therapeutic strategies in relation to disease with an immunological origin. © 2020 Wiley Periodicals, Inc
    corecore