1,066 research outputs found
Implementing a definitive notation for interactive graphics
This paper describes the application of a definitive (definition-based) programming paradigm to graphics software. The potential merits of using definitive principles for interactive graphics were considered from a theoretical perspective in [Be87]; this paper is complementary, in that it describes the insights gained through practical experience in implementing a prototype system. The main characteristics of the prototype implementation are illustrated by simple examples. Analysis of the abstract machine model underlying this implementation suggests a general purpose programming paradigm based on definitive principles that can be applied to more ambitious applications
Program of large high perveance ionizer studies
Large porous tungsten sources of cesium ions - ionizer performance at high current densities and relation of performance to physical propertie
Galectin-3 interacts with the cell surface glycoprotein CD146 (MCAM, MUC18) and induces secretion of metastasis-promoting cytokines from vascular endothelial cells
The galactoside-binding protein galectin-3 is increasingly recognized as an important player in cancer development, progression, and metastasis via its interactions with various galactoside-terminated glycans. We have shown previously that circulating galectin-3, which is increased up to 30-fold in cancer patients, promotes blood-borne metastasis in an animal cancer model. This effect is partly attributable to the interaction of galectin-3 with unknown receptor(s) on vascular endothelial cells and causes endothelial secretion of several metastasis-promoting cytokines. Here we sought to identify the galectin-3-binding molecule(s) on the endothelial cell surface responsible for the galectin-3-mediated cytokine secretion. Using two different galectin-3 affinity purification processes, we extracted four cell membrane glycoproteins, CD146/melanoma cell adhesion molecule (MCAM)/MUC18, CD31/platelet endothelial cell adhesion molecule-1 (PECAM-1), CD144/VE-cadherin, and CD106/Endoglin, from vascular endothelial cells. CD146 was the major galectin-3-binding ligand and strongly co-localized with galectin-3 on endothelial cell surfaces treated with exogenous galectin-3. Moreover, galectin-3 bound to N-linked glycans on CD146 and induced CD146 dimerization and subsequent activation of AKT signaling. siRNA-mediated suppression of CD146 expression completely abolished the galectin-3-induced secretion of IL-6 and G-CSF cytokines from the endothelial cells. Thus, CD146/MCAM is the functional galectin-3-binding ligand on endothelial cell surfaces responsible for galectin-3-induced secretion of metastasis-promoting cytokines. We conclude that CD146/MCAM interactions with circulating galectin-3 may have an important influence on cancer progression and metastasis
Suited for Success? : Suits, Status, and Hybrid Masculinity
This document is the Accepted Manuscript version. The final, definitive version of this paper has been published in Men and Masculinities, March 2017, doi: https://doi.org/10.1177/1097184X17696193, published by SAGE Publishing, All rights reserved.This article analyzes the sartorial biographies of four Canadian men to explore how the suit is understood and embodied in everyday life. Each of these men varied in their subject positions—body shape, ethnicity, age, and gender identity—which allowed us to look at the influence of men’s intersectional identities on their relationship with their suits. The men in our research all understood the suit according to its most common representation in popular culture: a symbol of hegemonic masculinity. While they wore the suit to embody hegemonic masculine configurations of practice—power, status, and rationality—most of these men were simultaneously marginalized by the gender hierarchy. We explain this disjuncture by using the concept of hybrid masculinity and illustrate that changes in the style of hegemonic masculinity leave its substance intact. Our findings expand thinking about hybrid masculinity by revealing the ways subordinated masculinities appropriate and reinforce hegemonic masculinity.Peer reviewe
Selection on Coding and Regulatory Variation Maintains Individuality in Major Urinary Protein Scent Marks in Wild Mice
Recognition of individuals by scent is widespread across animal taxa. Though animals can often discriminate chemical blends based on many compounds, recent work shows that specific protein pheromones are necessary and sufficient for individual recognition via scent marks in mice. The genetic nature of individuality in scent marks (e.g. coding versus regulatory variation) and the evolutionary processes that maintain diversity are poorly understood. The individual signatures in scent marks of house mice are the protein products of a group of highly similar paralogs in the major urinary protein (Mup) gene family. Using the offspring of wild-caught mice, we examine individuality in the major urinary protein (MUP) scent marks at the DNA, RNA and protein levels. We show that individuality arises through a combination of variation at amino acid coding sites and differential transcription of central Mup genes across individuals, and we identify eSNPs in promoters. There is no evidence of post-transcriptional processes influencing phenotypic diversity as transcripts accurately predict the relative abundance of proteins in urine samples. The match between transcripts and urine samples taken six months earlier also emphasizes that the proportional relationships across central MUP isoforms in urine is stable. Balancing selection maintains coding variants at moderate frequencies, though pheromone diversity appears limited by interactions with vomeronasal receptors. We find that differential transcription of the central Mup paralogs within and between individuals significantly increases the individuality of pheromone blends. Balancing selection on gene regulation allows for increased individuality via combinatorial diversity in a limited number of pheromones
Electron-hole asymmetry in two-terminal graphene devices
A theoretical model is proposed to describe asymmetric gate-voltage
dependence of conductance and noise in two-terminal ballistic graphene devices.
The model is analyzed independently within the self-consistent Hartree and
Thomas-Fermi approximations. Our results justify the prominent role of metal
contacts in recent experiments with suspended graphene flakes. The
contact-induced electrostatic potentials in graphene demonstrate a power-law
decay with the exponent varying from -1 to -0.5. Within our model we explain
electron-hole asymmetry and strong Fabri-Perot oscillations of the conductance
and noise at positive doping, which were observed in many experiments with
submicrometer samples. Limitations of the Thomas-Fermi approximation in a
vicinity of the Dirac point are discussed.Comment: 7 pages, 8 figure
The impact of postsynaptic density 95 blocking peptide (Tat-NR2B9c) and an iNOS inhibitor (1400W) on proteomic profile of the hippocampus in C57BL/6J mouse model of kainate-induced epileptogenesis
Antiepileptogenic agents that prevent the development of epilepsy following a brain insult remain the holy grail of epilepsy therapeutics. We have employed a label‐free proteomic approach that allows quantification of large numbers of brain‐expressed proteins in a single analysis in the mouse (male C57BL/6J) kainate (KA) model of epileptogenesis. In addition, we have incorporated two putative antiepileptogenic drugs, postsynaptic density protein‐95 blocking peptide (PSD95BP or Tat‐NR2B9c) and a highly selective inducible nitric oxide synthase inhibitor, 1400W, to give an insight into how such agents might ameliorate epileptogenesis. The test drugs were administered after the induction of status epilepticus (SE) and the animals were euthanized at 7 days, their hippocampi removed, and subjected to LC‐MS/MS analysis. A total of 2,579 proteins were identified; their normalized abundance was compared between treatment groups using ANOVA, with correction for multiple testing by false discovery rate. Significantly altered proteins were subjected to gene ontology and KEGG pathway enrichment analyses. KA‐induced SE was most robustly associated with an alteration in the abundance of proteins involved in neuroinflammation, including heat shock protein beta‐1 (HSP27), glial fibrillary acidic protein, and CD44 antigen. Treatment with PSD95BP or 1400W moderated the abundance of several of these proteins plus that of secretogranin and Src substrate cortactin. Pathway analysis identified the glutamatergic synapse as a key target for both drugs. Our observations require validation in a larger‐scale investigation, with candidate proteins explored in more detail. Nevertheless, this study has identified several mechanisms by which epilepsy might develop and several targets for novel drug development
Recommended from our members
The Cornwall a-book: An Augmented Travel Guide Using Next Generation Paper
Electronic publishing usually presents readers with book or e-book options for reading on paper or screen. In this paper, we introduce a third method of reading on paper-and-screen through the use of an augmented book (‘a-book’) with printed hotlinks than can be viewed on a nearby smartphone or other device. Two experimental versions of an augmented guide to Cornwall are shown using either optically recognised pages or embedded electronics making the book sensitive to light and touch. We refer to these as second generation (2G) and third generation (3G) paper respectively. A common architectural framework, authoring workflow and interaction model is used for both technologies, enabling the creation of two future generations of augmented books with interactive features and content. In the travel domain we use these features creatively to illustrate the printed book with local multimedia and updatable web media, to point to the printed pages from the digital content, and to record personal and web media into the book
- …