18 research outputs found

    Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves

    Get PDF
    International audienceBackground: When cultivated under stress conditions, many microalgae species accumulate both starch and oil (triacylglycerols). The model green microalga Chlamydomonas reinhardtii has recently emerged as a model to test genetic engineering or cultivation strategies aiming at increasing lipid yields for biodiesel production. Blocking starch synthesis has been suggested as a way to boost oil accumulation. Here, we characterize the triacylglycerol (TAG) accumulation process in Chlamydomonas and quantify TAGs in various wild-type and starchless strains. Results: In response to nitrogen deficiency, Chlamydomonas reinhardtii produced TAGs enriched in palmitic, oleic and linoleic acids that accumulated in oil-bodies. Oil synthesis was maximal between 2 and 3 days following nitrogen depletion and reached a plateau around day 5. In the first 48 hours of oil deposition, a~80% reduction in the major plastidial membrane lipids occurred. Upon nitrogen re-supply, mobilization of TAGs started after starch degradation but was completed within 24 hours. Comparison of oil content in five common laboratory strains (CC124, CC125, cw15, CC1690 and 11-32A) revealed a high variability, from 2 μg TAG per million cell in CC124 to 11 μg in 11-32A. Quantification of TAGs on a cell basis in three mutants affected in starch synthesis (cw15sta1-2, cw15sta6 and cw15sta7-1) showed that blocking starch synthesis did not result in TAG over-accumulation compared to their direct progenitor, the arginine auxotroph strain 330. Moreover, no significant correlation was found between cellular oil and starch levels among the twenty wild-type, mutants and complemented strains tested. By contrast, cellular oil content was found to increase steeply with salt concentration in the growth medium. At 100 mM NaCl, oil level similar to nitrogen depletion conditions could be reached in CC124 strain. Conclusion: A reference basis for future genetic studies of oil metabolism in Chlamydomonas is provided. Results highlight the importance of using direct progenitors as control strains when assessing the effect of mutations on oil content. They also suggest the existence in Chlamydomonas of complex interplays between oil synthesis, genetic background and stress conditions. Optimization of such interactions is an alternative to targeted metabolic engineering strategies in the search for high oil yields

    New Subunits NDH-M, -N, and -O, Encoded by Nuclear Genes, Are Essential for Plastid Ndh Complex Functioning in Higher Plants

    No full text
    In higher plants, the Ndh complex reduces plastoquinones and is involved in cyclic electron flow around photosystem I, supplying extra-ATP for photosynthesis, particularly under environmental stress conditions. Based on plastid genome sequences, the Ndh complex would contain 11 subunits (NDH-A to -K), but homologies with bacterial complex indicate the probable existence of additional subunits. To identify missing subunits, tobacco (Nicotiana tabacum) NDH-H was His tagged at its N terminus using plastid transformation. A functional Ndh subcomplex was purified by Ni(2+) affinity chromatography and its subunit composition analyzed by mass spectrometry. Five plastid encoded subunits (NDH-A, -H, -I, -J, and -K) were identified as well as three new subunits (NDH-M, -N, and -O) homologous to cyanobacterial and higher plant proteins. Arabidopsis thaliana mutants missing one of these new subunits lack a functional Ndh complex, and NDH-M and NDH-N are not detected in a tobacco transformant lacking the Ndh complex. We discuss the involvement of these three nuclear-encoded subunits in the functional integrity of the plastidial complex

    Plastidial Expression of Type II NAD(P)H Dehydrogenase Increases the Reducing State of Plastoquinones and Hydrogen Photoproduction Rate by the Indirect Pathway in Chlamydomonas reinhardtii

    No full text
    International audienceAbstract Biological conversion of solar energy into hydrogen is naturally realized by some microalgae species due to a coupling between the photosynthetic electron transport chain and a plastidial hydrogenase. While promising for the production of clean and sustainable hydrogen, this process requires improvement to be economically viable. Two pathways, called direct and indirect photoproduction, lead to sustained hydrogen production in sulfur-deprived Chlamydomonas reinhardtii cultures. The indirect pathway allows an efficient time-based separation of O2 and H2 production, thus overcoming the O2 sensitivity of the hydrogenase, but its activity is low. With the aim of identifying the limiting step of hydrogen production, we succeeded in overexpressing the plastidial type II NAD(P)H dehydrogenase (NDA2). We report that transplastomic strains overexpressing NDA2 show an increased activity of nonphotochemical reduction of plastoquinones (PQs). While hydrogen production by the direct pathway, involving the linear electron flow from photosystem II to photosystem I, was not affected by NDA2 overexpression, the rate of hydrogen production by the indirect pathway was increased in conditions, such as nutrient limitation, where soluble electron donors are not limiting. An increased intracellular starch was observed in response to nutrient deprivation in strains overexpressing NDA2. It is concluded that activity of the indirect pathway is limited by the nonphotochemical reduction of PQs, either by the pool size of soluble electron donors or by the PQ-reducing activity of NDA2 in nutrient-limited conditions. We discuss these data in relation to limitations and biotechnological improvement of hydrogen photoproduction in microalgae

    Hydrogen Production in Chlamydomonas: Photosystem II-Dependent and -Independent Pathways Differ in Their Requirement for Starch Metabolism1[W]

    No full text
    Under sulfur deprivation conditions, the green alga Chlamydomonas reinhardtii produces hydrogen in the light in a sustainable manner thanks to the contribution of two pathways, direct and indirect. In the direct pathway, photosystem II (PSII) supplies electrons to hydrogenase through the photosynthetic electron transport chain, while in the indirect pathway, hydrogen is produced in the absence of PSII through a photosystem I-dependent process. Starch metabolism has been proposed to contribute to both pathways by feeding respiration and maintaining anoxia during the direct pathway and by supplying reductants to the plastoquinone pool during the indirect pathway. At variance with this scheme, we report that a mutant lacking starch (defective for sta6) produces similar hydrogen amounts as the parental strain in conditions of sulfur deprivation. However, when PSII is inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea, conditions where hydrogen is produced by the indirect pathway, hydrogen production is strongly reduced in the starch-deficient mutant. We conclude that starch breakdown contributes to the indirect pathway by feeding electrons to the plastoquinone pool but is dispensable for operation of the direct pathway that prevails in the absence of DCMU. While hydrogenase induction was strongly impaired in the starch-deficient mutant under dark anaerobic conditions, wild-type-like induction was observed in the light. Because this light-driven hydrogenase induction is DCMU insensitive and strongly inhibited by carbonyl cyanide-p-trifluoromethoxyphenylhydrazone or 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone, we conclude that this process is regulated by the proton gradient generated by cyclic electron flow around PSI

    The Green Microalga Chlamydomonas reinhardtii Has a Single -3 Fatty Acid Desaturase That Localizes to the Chloroplast and Impacts Both Plastidic and Extraplastidic Membrane Lipids

    No full text
    International audienceThe v-3 polyunsaturated fatty acids account for more than 50% of total fatty acids in the green microalga Chlamydomonas reinhardtii, where they are present in both plastidic and extraplastidic membranes. In an effort to elucidate the lipid desaturation pathways in this model alga, a mutant with more than 65% reduction in total v-3 fatty acids was isolated by screening an insertional mutant library using gas chromatography-based analysis of total fatty acids of cell pellets. Molecular genetics analyses revealed the insertion of a TOC1 transposon 113 bp upstream of the ATG start codon of a putative v-3 desaturase (CrFAD7; locus Cre01.g038600). Nuclear genetic complementation of crfad7 using genomic DNA containing CrFAD7 restored the wild-type fatty acid profile. Under standard growth conditions, the mutant is indistinguishable from the wild type except for the fatty acid difference, but when exposed to short-term heat stress, its photosynthesis activity is more thermotolerant than the wild type. A comparative lipidomic analysis of the crfad7 mutant and the wild type revealed reductions in all v-3 fatty acid-containing plastidic and extraplastidic glycerolipid molecular species. CrFAD7 was localized to the plastid by immunofluorescence in situ hybridization. Transformation of the crfad7 plastidial genome with a codon-optimized CrFAD7 restored the v-3 fatty acid content of both plastidic and extraplastidic lipids. These results show that CrFAD7 is the only v-3 fatty acid desaturase expressed in C. reinhardtii, and we discuss possible mechanisms of how a plastid-located desaturase may impact the v-3 fatty acid content of extraplastidic lipids
    corecore