97 research outputs found

    A Review of Sociological Issues in Fire Safety Regulation

    Get PDF
    This paper presents an overview of contemporary sociological issues in fire safety. The most obviously social aspects of fire safety—those that relate to the socioeconomic distribution of fire casualties and damage—are discussed first. The means that society uses to mitigate fire risks through regulation are treated next; focusing on the shift towards fire engineered solutions and the particular challenges this poses for the social distribution and communication of fire safety knowledge and expertise. Finally, the social construction of fire safety knowledge is discussed, raising questions about whether the confidence in the application of this knowledge by the full range of participants in the fire safety design and approvals process is always justified, given the specific assumptions involved in both the production of the knowledge and its extension to applications significantly removed from the original knowledge production; and the requisite competence that is therefore needed to apply this knowledge. The overarching objective is to argue that the fire safety professions ought to be more reflexive and informed about the nature of the knowledge and expertise that they develop and apply, and to suggest that fire safety scientists and engineers ought to actively collaborate with social scientists in research designed to study the way people interact with fire safety technology

    Experimental Characterisation of the Fire Behaviour of Thermal Insulation Materials for a Performance-Based Design Methodology

    Get PDF
    A novel performance-based methodology for the quantitative fire safe design of building assemblies including insulation materials has recently been proposed. This approach is based on the definition of suitable thermal barriers in order to control the fire hazards imposed by the insulation. Under this framework, the concept of “critical temperature” has been used to define an initiating failure criterion for the insulation, so as to ensure there will be no significant contribution to the fire nor generation of hazardous gas effluents. This paper proposes a methodology to evaluate this “critical temperature” using as examples some of the most common insulation materials used for buildings in the EU market, i.e. rigid polyisocyanurate foam, rigid phenolic foam, rigid expanded polystyrene foam and low density flexible stone wool. A characterisation of these materials, based on a series of ad-hoc Cone Calorimeter and thermo-gravimetric experiments, serves to establish the rationale behind the quantification of the critical temperature. The temperature of the main peak of pyrolysis, obtained from differential thermo-gravimetric analysis under a nitrogen atmosphere at low heating rates, is proposed as the “critical temperature” for materials that do not significantly shrink and melt, i.e. charring insulation materials. For materials with shrinking and melting behaviour it is suggested that the melting point could be used as “critical temperature”. Conservative values of “critical temperature” proposed are 300°C for polyisocyanurate, 425°C for phenolic foam and 240°C for expanded polystyrene. The concept of a “critical temperature” for the low density stone wool is examined in the same manner and found to be non-applicable due to the inability to promote a flammable mixture. Additionally, thermal inertia values required for the performance-based methodology are obtained for PIR and PF using a novel approach, providing thermal inertia values within the range 4.5 to 6.5\ua0×\ua010\ua0W\ua0s\ua0K\ua0m

    Excited-State Dynamics in Colloidal Semiconductor Nanocrystals

    Get PDF

    Analysis Of Compartment Fires With Overhead Forced Ventilation

    No full text
    corecore