43 research outputs found

    Complex interaction of sensory and motor signs and symptoms in chronic CRPS.

    Get PDF
    Spontaneous pain, hyperalgesia as well as sensory abnormalities, autonomic, trophic, and motor disturbances are key features of Complex Regional Pain Syndrome (CRPS). This study was conceived to comprehensively characterize the interaction of these symptoms in 118 patients with chronic upper limb CRPS (duration of disease: 43±23 months). Disease-related stress, depression, and the degree of accompanying motor disability were likewise assessed. Stress and depression were measured by Posttraumatic Stress Symptoms Score and Center for Epidemiological Studies Depression Test. Motor disability of the affected hand was determined by Sequential Occupational Dexterity Assessment and Michigan Hand Questionnaire. Sensory changes were assessed by Quantitative Sensory Testing according to the standards of the German Research Network on Neuropathic Pain. Almost two-thirds of all patients exhibited spontaneous pain at rest. Hand force as well as hand motor function were found to be substantially impaired. Results of Quantitative Sensory Testing revealed a distinct pattern of generalized bilateral sensory loss and hyperalgesia, most prominently to blunt pressure. Patients reported substantial motor complaints confirmed by the objective motor disability testings. Interestingly, patients displayed clinically relevant levels of stress and depression. We conclude that chronic CRPS is characterized by a combination of ongoing pain, pain-related disability, stress and depression, potentially triggered by peripheral nerve/tissue damage and ensuing sensory loss. In order to consolidate the different dimensions of disturbances in chronic CRPS, we developed a model based on interaction analysis suggesting a complex hierarchical interaction of peripheral (injury/sensory loss) and central factors (pain/disability/stress/depression) predicting motor dysfunction and hyperalgesia

    Lymphocyte subsets and the role of Th1/Th2 balance in stressed chronic pain patients

    Get PDF
    Background: The complex regional pain syndrome (CRPS) and fibromyalgia (FM) are chronic pain syndromes occurring in highly stressed individuals. Despite the known connection between the nervous system and immune cells, information on distribution of lymphocyte subsets under stress and pain conditions is limited. Methods: We performed a comparative study in 15 patients with CRPS type I, 22 patients with FM and 37 age- and sex-matched healthy controls and investigated the influence of pain and stress on lymphocyte number, subpopulations and the Th1/Th2 cytokine ratio in T lymphocytes. Results: Lymphocyte numbers did not differ between groups. Quantitative analyses of lymphocyte subpopulations showed a significant reduction of cytotoxic CD8+ lymphocytes in both CRPS (p < 0.01) and FM (p < 0.05) patients as compared with healthy controls. Additionally, CRPS patients were characterized by a lower percentage of IL-2-producing T cell subpopulations reflecting a diminished Th1 response in contrast to no changes in the Th2 cytokine profile. Conclusions: Future studies are warranted to answer whether such immunological changes play a pathogenetic role in CRPS and FM or merely reflect the consequences of a pain-induced neurohumoral stress response, and whether they contribute to immunosuppression in stressed chronic pain patients. Copyright (c) 2008 S. Karger AG, Basel

    PET/MR imaging of bone lesions - implications for PET quantification from imperfect attenuation correction

    Full text link
    PURPOSE: Accurate attenuation correction (AC) is essential for quantitative analysis of PET tracer distribution. In MR, the lack of cortical bone signal makes bone segmentation difficult and may require implementation of special sequences. The purpose of this study was to evaluate the need for accurate bone segmentation in MR-based AC for whole-body PET/MR imaging. METHODS: In 22 patients undergoing sequential PET/CT and 3-T MR imaging, modified CT AC maps were produced by replacing pixels with values of >100 HU, representing mostly bone structures, by pixels with a constant value of 36 HU corresponding to soft tissue, thereby simulating current MR-derived AC maps. A total of 141 FDG-positive osseous lesions and 50 soft-tissue lesions adjacent to bones were evaluated. The mean standardized uptake value (SUVmean) was measured in each lesion in PET images reconstructed once using the standard AC maps and once using the modified AC maps. Subsequently, the errors in lesion tracer uptake for the modified PET images were calculated using the standard PET image as a reference. RESULTS: Substitution of bone by soft tissue values in AC maps resulted in an underestimation of tracer uptake in osseous and soft tissue lesions adjacent to bones of 11.2 ± 5.4 % (range 1.5-30.8 %) and 3.2 ± 1.7 % (range 0.2-4 %), respectively. Analysis of the spine and pelvic osseous lesions revealed a substantial dependence of the error on lesion composition. For predominantly sclerotic spine lesions, the mean underestimation was 15.9 ± 3.4 % (range 9.9-23.5 %) and for osteolytic spine lesions, 7.2 ± 1.7 % (range 4.9-9.3 %), respectively. CONCLUSION: CT data simulating treating bone as soft tissue as is currently done in MR maps for PET AC leads to a substantial underestimation of tracer uptake in bone lesions and depends on lesion composition, the largest error being seen in sclerotic lesions. Therefore, depiction of cortical bone and other calcified areas in MR AC maps is necessary for accurate quantification of tracer uptake values in PET/MR imaging

    Outcomes from elective colorectal cancer surgery during the SARS-CoV-2 pandemic

    Get PDF
    This study aimed to describe the change in surgical practice and the impact of SARS-CoV-2 on mortality after surgical resection of colorectal cancer during the initial phases of the SARS-CoV-2 pandemic

    World Congress Integrative Medicine & Health 2017: Part one

    Get PDF

    Insects Breeding in Adobe Walls

    No full text
    Volume: 12Start Page: 30End Page: 3

    A Few Notes on Brenthid\ue6

    No full text
    Volume: 12Start Page: 168End Page: 16

    Effects of low-dose intranasal (S)-ketamine in patients with neuropathic pain

    No full text
    a b s t r a c t Background: NMDA receptors are involved in the development and maintenance of neuropathic pain. We evaluated the efficacy and safety of intranasal (S)-ketamine, one of the most potent clinically available NMDA receptor antagonists. Methods: Sixteen patients with neuropathic pain of various origins were randomized into two treatment groups: (S)-ketamine 0.2 mg/kg (group 1); (S)-ketamine 0.4 mg/kg (group 2). Plasma concentrations of (S)-ketamine and (S)-norketamine were measured over 6 h by High Performance Liquid Chromatography combined with mass spectrometry. Quantitative sensory testing (QST) was conducted before, during and after treatment. Side effects and amount of pain reduction were recorded. Results: Intranasal (S)-ketamine administration lead to peak plasma concentrations of 27.7 ± 5.9 ng/ml at 10 ± 6.3 min (group 1) and 34.3 ± 22.2 ng/ml at 13.8 ± 4.8 min after application (group 2). Maximal plasma concentrations of (S)-norketamine were 18.3 ± 14.9 ng/ml at 81 ± 59 min (group 1) and 34.3 ± 5.5 ng/ml at 75 ± 40 min (group 2). Pain scores decreased significantly in both groups with minimal pain at 60 min after drug administration (70 ± 10% and 61 ± 13% of initial pain in groups 1 and 2). The time course of pain decrease was significantly correlated with plasma concentrations of (S)-ketamine and (S)-norketamine (partial correlations: (S)-norketamine: À0.90 and À0.86; (S)-ketamine: À0.72 and À0.71 for group 1 and group 2, respectively). Higher dosing elicited significantly more side effects. Intranasal (S)-ketamine had no significant impact on thermal or mechanical detection and pain thresholds in normal or symptomatic skin areas. Conclusions: Intranasal administration of low dose (S)-ketamine rapidly induces adequate plasma concentrations of (S)-ketamine and subsequently of its metabolite (S)-norketamine. The time course of analgesia correlated with plasma concentrations
    corecore