975 research outputs found
Radiomics to better characterize small renal masses
Purpose:
Radiomics is a specific field of medical research that uses programmable recognition tools to extract objective information from standard images to combine with clinical data, with the aim of improving diagnostic, prognostic, and predictive accuracy beyond standard visual interpretation. We performed a narrative review of radiomic applications that may support improved characterization of small renal masses (SRM). The main focus of the review was to identify and discuss methods which may accurately differentiate benign from malignant renal masses, specifically between renal cell carcinoma (RCC) subtypes and from angiomyolipoma without visible fat (fat-poor AML) and oncocytoma. Furthermore, prediction of grade, sarcomatoid features, and gene mutations would be of importance in terms of potential clinical utility in prognostic stratification and selecting personalised patient management strategies. /
Methods:
A detailed search of original articles was performed using the PubMed–MEDLINE database until 20 September 2020 to identify the English literature relevant to radiomics applications in renal tumour assessment. In total, 42 articles were included in the analysis in 3 main categories related to SRM: prediction of benign versus malignant SRM, subtypes, and nuclear grade, and other features of aggressiveness. /
Conclusion:
Overall, studies reported the superiority of radiomics over expert radiological assessment, but were mainly of retrospective design and therefore of low-quality evidence. However, it is clear that radiomics is an attractive modality that has the potential to improve the non-invasive diagnostic accuracy of SRM imaging and prediction of its natural behaviour. Further prospective validation studies of radiomics are needed to augment management algorithms of SRM
Near-optimal combination of disparity across a log-polar scaled visual field
The human visual system is foveated: we can see fine spatial details in central vision, whereas resolution is poor in our peripheral visual field, and this loss of resolution follows an approximately logarithmic decrease. Additionally, our brain organizes visual input in polar coordinates. Therefore, the image projection occurring between retina and primary visual cortex can be mathematically described by the log-polar transform. Here, we test and model how this space-variant visual processing affects how we process binocular disparity, a key component of human depth perception. We observe that the fovea preferentially processes disparities at fine spatial scales, whereas the visual periphery is tuned for coarse spatial scales, in line with the naturally occurring distributions of depths and disparities in the real-world. We further show that the visual system integrates disparity information across the visual field, in a near-optimal fashion. We develop a foveated, log-polar model that mimics the processing of depth information in primary visual cortex and that can process disparity directly in the cortical domain representation. This model takes real images as input and recreates the observed topography of human disparity sensitivity. Our findings support the notion that our foveated, binocular visual system has been moulded by the statistics of our visual environment
- …