141 research outputs found

    Perceived Blur in Naturally Contoured Images Depends on Phase

    Get PDF
    Perceived blur is an important measure of image quality and clinical visual function. The magnitude of image blur varies across space and time under natural viewing conditions owing to changes in pupil size and accommodation. Blur is frequently studied in the laboratory with a variety of digital filters, without comparing how the choice of filter affects blur perception. We examine the perception of image blur in synthetic images composed of contours whose orientation and curvature spatial properties matched those of natural images but whose blur could be directly controlled. The images were blurred by manipulating the slope of the amplitude spectrum, Gaussian low-pass filtering or filtering with a Sinc function, which, unlike slope or Gaussian filtering, introduces periodic phase reversals similar to those in optically blurred images. For slope-filtered images, blur discrimination thresholds for over-sharpened images were extremely high and perceived blur could not be matched with either Gaussian or Sinc filtered images, suggesting that directly manipulating image slope does not simulate the perception of blur. For Gaussian- and Sinc-blurred images, blur discrimination thresholds were dipper-shaped and were well-fit with a simple variance discrimination model and with a contrast detection threshold model, but the latter required different contrast sensitivity functions for different types of blur. Blur matches between Gaussian- and Sinc-blurred images were used to test several models of blur perception and were in good agreement with models based on luminance slope, but not with spatial frequency based models. Collectively, these results show that the relative phases of image components, in addition to their relative amplitudes, determines perceived blur

    Can Neuromorphic Computer Vision Inform Vision Science? Disparity Estimation as a Case Study

    Get PDF
    The primate visual system efficiently and effectively solves a multitude of tasks from orientation detection to motion detection. The Computer Vision community is therefore beginning to implement algorithms that mimic the processing hierarchies present in the primate visual system in the hope of achieving flexible and robust artificial vision systems. Here, we reappropriate the neuroscience “borrowed” by the Computer Vision community and ask whether neuromorphic computer vision solutions may give us insight into the functioning of the primate visual system. Specifically, we implement a neuromorphic algorithm for disparity estimation and compare its performance against that of human observers. The algorithm greatly outperforms human subjects when tuned with parameters to compete with non-neural approaches to disparity estimation on benchmarking stereo image datasets. Conversely, when the algorithm is implemented with biologically plausible receptive field sizes, spatial selectivity, phase tuning, and neural noise, its performance is directly relatable to that of human observers. The receptive field size and the number of spatial scales sensibly determine the range of spatial frequencies in which the algorithm successfully operates. The algorithm’s phase tuning and neural noise in turn determine the algorithm’s peak disparity sensitivity. When included, retino-cortical mapping strongly degrades disparity estimation in the model’s periphery, further closening human and algorithm performance. Hence, a neuromorphic computer vision algorithm can be reappropriated to model human behavior, and can provide interesting insights into which aspects of human visual perception have been or are yet to be explained by vision science

    Acuity, crowding, reading and fixation stability

    Get PDF
    AbstractPeople with age-related macular disease frequently experience reading difficulty that could be attributed to poor acuity, elevated crowding or unstable fixation associated with peripheral visual field dependence. We examine how the size, location, spacing and instability of retinal images affect the visibility of letters and words at different eccentricities. Fixation instability was simulated in normally sighted observers by randomly jittering single or crowded letters or words along a circular arc of fixed eccentricity. Visual performance was assessed at different levels of instability with forced choice measurements of acuity, crowding and reading speed in a rapid serial visual presentation paradigm. In the periphery: (1) acuity declined; (2) crowding increased for acuity- and eccentricity-corrected targets; and (3), the rate of reading fell with acuity-, crowding- and eccentricity-corrected targets. Acuity and crowding were unaffected by even high levels of image instability. However, reading speed decreased with image instability, even though the visibility of the component letters was unaffected. The results show that reading performance cannot be standardised across the visual field by correcting the size, spacing and eccentricity of letters or words. The results suggest that unstable fixation may contribute to reading difficulties in people with low vision and therefore that rehabilitation may benefit from fixation training

    Levels of State and Trait Anxiety in Patients Referred to Ophthalmology by Primary Care Clinicians: A Cross Sectional Study

    Get PDF
    Purpose There is a high level of over-referral from primary eye care leading to significant numbers of people without ocular pathology (false positives) being referred to secondary eye care. The present study used a psychometric instrument to determine whether there is a psychological burden on patients due to referral to secondary eye care, and used Rasch analysis to convert the data from an ordinal to an interval scale. Design Cross sectional study. Participants and Controls 322 participants and 80 control participants. Methods State (i.e. current) and trait (i.e. propensity to) anxiety were measured in a group of patients referred to a hospital eye department in the UK and in a control group who have had a sight test but were not referred. Response category analysis plus infit and outfit Rasch statistics and person separation indices were used to determine the usefulness of individual items and the response categories. Principal components analysis was used to determine dimensionality. Main Outcome Measure Levels of state and trait anxiety measured using the State-Trait Anxiety Inventory. Results State anxiety scores were significantly higher in the patients referred to secondary eye care than the controls (p0.1). Rasch analysis highlighted that the questionnaire results needed to be split into “anxiety-absent” and “anxiety-present” items for both state and trait anxiety, but both subscales showed the same profile of results between patients and controls. Conclusions State anxiety was shown to be higher in patients referred to secondary eye care than the controls, and at similar levels to people with moderate to high perceived susceptibility to breast cancer. This suggests that referral from primary to secondary eye care can result in a significant psychological burden on some patients
    • 

    corecore