58 research outputs found

    Impact of Observed and Controlled Water Intake on Reticulorumen Temperature in Lactating Dairy Cattle

    Get PDF
    Dairy precision technologies helps producers monitor individual animals. Reticulorumen temperature boluses are a way to monitor core body temperature; however, factors such as water intake affects reticulorumen temperature. This research determined the effect of natural water intake and a controlled water drench on reticulorumen temperature (RT) in dairy cattle. In observational study part 1, tie- stall cows (n = 4) with RT transponders were observed for natural water intake (recorded by in line water meters) for 48 h. In experiment part 2, a randomized Latin square design with cows (n = 12) restricted on feed for 4 h, were drenched daily with a water quantity of 6.7 L, 11.4 L or 22.7 L, and at controlled water temperature of 1.7 °C, 7.2 °C, 15.5 °C, or 29.4 °C. Descriptively, observational study 1 had (Mean ± SD 0.27 ± 0.31 L ingested per drinking event (n = 84) and RT decline from baseline was 2.29 ± 1.82 °C. For the experiment, a 48-h specific rolling baseline temperature range (BTR) was calculated for each cow prior to the experiment to determine time required for RT to reach BTR, and time to return to BTR. In part 2 of the experiment, as water quantity increased, RT had a greater maximum degree drop from baseline. Water temperature and water quantity interaction influenced time required for BTR to reestablish. The coldest water temperature at the highest drench quantity affected time for BTR to reestablish the longest (103 min). Results from this study suggest that an algorithm could be designed to predict water intake events for producers using reticulorumen temperature

    Validation of a Commercial Automated Body Condition Scoring System on a Commercial Dairy Farm

    Get PDF
    Body condition scoring (BCS) is the management practice of assessing body reserves of individual animals by visual or tactile estimation of subcutaneous fat and muscle. Both high and low BCS can negatively impact milk production, disease, and reproduction. Visual or tactile estimation of subcutaneous fat reserves in dairy cattle relies on their body shape or thickness of fat layers and muscle on key areas of the body. Although manual BCS has proven beneficial, consistent qualitative scoring can be difficult to implement. The desirable BCS range for dairy cows varies within lactation and should be monitored at multiple time points throughout lactation for the most impact, a practice that can be hard to implement. However, a commercial automatic BCS camera is currently available for dairy cattle (DeLaval Body Condition Scoring, BCS DeLaval International AB, Tumba, Sweden). The objective of this study was to validate the implementation of an automated BCS system in a commercial setting and compare agreement of the automated body condition scores with conventional manual scoring. The study was conducted on a commercial farm in Indiana, USA, in April 2017. Three trained staff members scored 343 cows manually using a 1 to 5 BCS scale, with 0.25 increments. Pearson’s correlations (0.85, scorer 1 vs. 2; 0.87, scorer 2 vs. 3; and 0.86, scorer 1 vs. 3) and Cohen’s Kappa coefficients (0.62, scorer 1 vs. 2; 0.66, scorer 2 vs. 3; and 0.66, scorer 1 vs. 3) were calculated to assess interobserver reliability, with the correlations being 0.85, 0.87, and 0.86. The automated camera BCS scores were compared with the averaged manual scores. The mean BCS were 3.39 ± 0.32 and 3.27 ± 0.27 (mean ± SD) for manual and automatic camera scores, respectively. We found that the automated body condition scoring technology was strongly correlated with the manual scores, with a correlation of 0.78. The automated BCS camera system accuracy was equivalent to manual scoring, with a mean error of −0.1 BCS and within the acceptable manual error threshold of 0.25 BCS between BCS (3.00 to 3.75) but was less accurate for cows with high (\u3e 3.75) or low (\u3c 3.00) BCS scores compared to manual scorers. A Bland–Altman plot was constructed which demonstrated a bias in the high and low automated BCS scoring. The initial findings show that the BCS camera system provides accurate BCS between 3.00 to 3.75 but tends to be inaccurate at determining the magnitude of low and high BCS scores. However, the results are promising, as an automated system may encourage more producers to adopt BCS into their practices to detect early signs of BCS change for individual cattle. Future algorithm and software development is likely to increase the accuracy in automated BCS scoring

    3D CFD Analysis of Natural Ventilation in Reduced Scale Model of Compost Bedded Pack Barn for Dairy Cows

    Get PDF
    Compost bedded pack (CBP) barns have been receiving increased attention as an alternative housing system for dairy cattle. To create a satisfactory environment within CBP barns that promotes a good composting process, an adequate air movement and minimal temperature fluctuations throughout the building are required. Therefore, a study based on compost barn structure model employing techniques of dimensional analysis for naturally ventilated buildings was developed. Three-dimensional computational fluid dynamic (CFD) simulations of compost barns with different ridge designs and wind direction, along with the visual demonstration of the impact on airflow through structure were performed. The results showed that the barn ventilation CFD model and simulations were in good agreement with the experimental measurements, predicting the airflow through the CBP barns structure for alternative roof ridge types adequately. The results also indicate that the best roof configuration in the winter was the open ridge with chimney for a west to east wind direction
    • …
    corecore